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ABSTRACT 

The goal of t h i s  i n v e s t i g a t i o n  was t o  con t r ibu te  t o  tne  

understanding of s o l i d i f i c a t i o n  as i t  a f f ec t s  the performance 

and the s u i t a b i l i t y  of phase-change materials i n  thermal 

c o n t r o l  devices  A unidimensional mathematical model was 

established f o r  the  solidification of a l i q u i d  pa ra f f in  of 

f i n i t e  geometry, The method was based on the numerical  solu-  

tion by computer of t h e  two-phase heat-conduction equat ions 

w i t h  moving interl’ace and variable boundary conditions. 

Constant properties were assumed f o r  each phase although the 

p r o p e r t i e s  va r i ed  from one phase t o  the other .  The node1 

assumed that i n t e rna l  convect ive e f f e c t s  could be neglected.  

Super-cooling and nuc lea t ion  wer8 a l s o  assumed t o  b e  l n a i g n i f i -  

cant, 

An exper imenta l  system was se t  up t o  v e r i f y  the  theo re t -  

i c a l  analysis and r e s u l t a ,  The system cons i s t ed  of a 

rectangular c e l l  which was f i l l e d  with a p a r a f f i n ,  n-hexadecane 

(n-C,6H34). 

ant which w a s  c i r c u l a t e d  by a refrigerator. The s o l i d i f i c a -  

t ion process  was s t u d i e d  by reading  temperatures a t  different 

points i n  the cell by mean8 of copper-constantan thermo- 

couples, 

The cell itself was cooled from below by a cool- 

A comparison has been made between r e s u l t s  ob ta ined  from 

t h e o r e t i c a l - a n a l y s i s  computsr solutions and those obtained 

experimentally. Good agreement w& obtained between the 

lii 



experimental resul ts  ana those from theory, although the 

numerical results of t h e  mathematical model indicate a faster 

rate of s o l i d i f i c a t i o n  than that observed experimentally 

Data for  comparison between experimental and theoretical  

results are presented under each experimental run i n  the form 

of tables and graphs, 

l v  
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I I ITRODUCTIOIJ 

Phase-change piienoinena have r ece ived  wide s c i e n t i f i c  

a t t e n t i o n  f o r  some time and are of significant importance i n  

many *;echnif- a1 problems such as s o l i d i f i c a t i o n  of a b i l l e t ,  

formation of snow, s o l i d i f i c a t i o n  of an asphal t  layer, 

formation of smog, melting of metals and a ' l loys,  and growth 

of c r y s t a l s .  However, i t  has been only In very recent years 

t h a t  phase-change materials have been s e r i o u s l y  coiisidered 

f o r  s p a c e c r a f t  thermal c o n t r o l ,  I n  concept a such materials 

would be used In pass ive  systems t h a t  employ the process  of 

mel t ing  or  s o l i d i f i c a t i o n  t o  remove o r  add thermal energy 

from o r  t o  a system. With the  advent of s p a c e c r a f t  appl ica-  

t i o n s  and space t r a v e l ,  the  technology o f  phase-change 

phenomena is g e t t i n g  ?-mewed sei-entific a t t e n t i o n .  

P resen t ly ,  space vehicles lose heat t o  the envlron- 

mental vacuum of space mainly by raciiation. This may be an 

i n e f f i c i e n t  method of thermal c o n t r o l  during high-energy 

d i s s i p a t i o n  per iods  a even I f  "heat-pipes" o r  o t h e r  improved 

heat t ransfer  systems are enigloyed. Similarly , temperature- 

control systems based on liquid-vapor phase change may be 

i n e f f i c i e n t ,  bes ides  Involving s o p h i s t i c a t e d  i r revers ible  

f l u d  loop c i r c u i t s  Systems based on s o l i d - l i q u i d  phase 

change have many advantages whlch make them very useful f o r  

certain a p p l i c a t i o n s .  They are light, easy t o  handle,, and 

1 



easily used as wal l - l i n ing  elements around e l e c t r o n i c  equ ip -  

ment, Moreover, they a re  essent ia l ly  passive, One disad- 

vantage t h a t  s o l i d - l i q u i d  phase change materials have when 

compared t o  the  l iquid-vapor  phase change materials , I s  t h a t  the 

former help@ lower hea t -e l imina t ion  c a p a c i t i e s .  Fus ib l e  

materials can be used t o  s t o r e  t he  energy evolved dur ing  

high-density d i s s i p a t i o n  per iods .  The s t o r e d  energy can then 

be released continuously i n t o  space or t o  the s y s t e m  during 

low-temperature cond i t ions ,  Thls cyc le  is p e r t i n e n t  i n  the 

case of space veh ic l e s  moving in extremes of temperature 

from t h e  earth i n t o  space and from space t o  earth dur ing  

re -en t ry ,  

The p r e s e n t  s o l i d i f i c a t i o n  r e sea rch  program was mainly 

devoted t o  s t u d y  of one-dimensional systems wi th  time- 

dependent boundary cond i t ions ,  It n u s t  be emphasized t h a t  

t h e  p r i n c i p a l  g o a l  was not-  t h e  s tudy of t he  performance of  

f u s i b l e  materials as a c t u a l  phase-change tem2eraturc con- 

t r o l l e r s ,  but the  development of a reasonably accu ra t e ,  

s i m p l i f i e d  model f o r  t h e  s o l i d i f i c a t i o n  of a f u s i b l e  material  

of f i n i t e  rectangular dimensions under v a r i a b l e  boundary 

condi t ions  as would be t h e  l i k e l y  s i t u a t i o n  i n  an actual 

thermal c o n t r o l l e r .  

Although from t h e  t h e o r c t h a l  s t a n d p o i n t  almost any 

material would perform equal ly  s a t i s f a c t o r i l y ,  i t  was pre- 

fepred t o  select t h e  f u s i b l e  material froin those gener-ally 

accepted i n  current thts-mal-coctrol research. i?ormal 

p a r a f f i n s  with even numbers of carbon atoms r,re those 
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materials most widely used because they satisfy most of the 

requirements of acceptable phase-change materials. They nave 

melting or solidification points close t o  the  acceptable 

range for the design media of e lectronic equipment, 40°F t o  

150°F, with phase-transition enthalpy changes higher  than or, 

at least,  equal t o  100 i3tu per pound. They are also non- 

corrosive, non-toxic, chemically i n e r t  and stable,  as well 

as having low vapor pressures, small volume changes, ar.d 

negligible sub-coolkg.  In the present research prcgram, 

n-hexadecane (n-C Ai ) was the material studied. lo 34 



LITi5RATUR.E SURVEY 

Much t h e o r e t i c a l  xork has been done i n  t h e  l i t e r a t u r e  

on problems which are d i r e c t l y  o r  i n d l r e c t l y  re la ted  t o  

p h y s i c a l  change of s t a t e ,  The basic f e a t u r e  of such problems 

of change of s t a t z  i s  the  e x i s t e n c e  of a moving boundary o r  

s u r f a c e  between phases. 

of ten considered is how t o  determine the w a y  i n  which this 

s u r f a c e  o r  boundary moves. Heat m a y  be liberated o r  absorbed 

Therefore , the problem that is most 

on the s u r f a c e ;  there  may be volume change accompanving the 

change of state,  and t h e  thermal p r o p e r t i e s  of the phases on 

either s ide  of t h e  i n t e r f a c e  m a y  be d i f f e r e n t  f o r  the phases 

and may vary as t he  change of  s ta te  proceeds,  Therefore ,  the 

problem is e s s e n t i a l l y  non-l inear  i n  n a t u r e  and gene ra l  

a n a l y t i c a l  s o l u t i o n s  f o r  i t  nay be wanting, Some e x a c t  

solutions for models t h a t  mathematically approximate the 

r e a l  problems have been obtained,  mostly f o r  i n f i n i t e  o r  

semi- inf ini  t e  geometry , 

Carslaw and Jaeger(’;, who were among t h e  first t o  g ive  

in-depth t rea tment  of me l t ing  a i d  s o l i d i f i c a t i o n  problems 

comment on the  need for numerical methods for solving these 

probl2ms which are often rendered more complex by cylin- 

d r i c a l ,  spherical, 

Carslaw and  Jaeger make no attempt to g i v e  any e x a c t  301~- 

tions f o r  the  phase change problem when f i n i t e  geometries are 

involved, 

and o t h e r  f i n i t e  geometric conf igura t ions .  

h’owever, t h e y  do give a s e r l e s  so lu t ior i  f o r  the 
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ordinary t r a n s i e n t  h e a t - t r a n a f e r  problem w i t h  no phase cnange, 

T h i s  I s  p a r t i c u l a r l y  u s e f u l  i n  d e t e r m i n i n g  the temperature 

prof i le  of a subs tance ,  which i s  s u b j e c t e d  t o  heat change, 

for t h e  i n t e r v a l  beginning with the i n i t i a t i o n  of the heat  

change and endin& with the  i n i t i a t i o n  of  change of s t a t e .  

Another good q u a l i t y  of the ser ies  s o l u t i o n  that t h e y  give 

is t h a t  i t  takes i n t o  account time-dependent i n i t i a l  and 

boundary condi t ions  

Many of the  solutions presen ted  l r r  t h e  l i t e ra ture  con- 

cern ing  phase change problems are v a l i d  only i f  the  material 

under study i s  i n i t i a l l y  a t  i t s  equ i l ib r ium temperature for 

change of  s ta te  These s o l u t i o n s  ignore  t h e  more-frequently- 

e n c o u t e r c d  case I n  which the  material under study may be  

i n i t i a l l y  a t  a temperature ,  ;lay room temperature,  t h a t  I s  

quite d i f f e r e n t  from i t s  equ i l ib r ium phase-chknge temperature 

and may have t o  oe brought t o  t h l s  equilibrium temperature 

from i t s  i n i t i a l  temperature by some heat i n p u t ,  withdrawal, 

o r  gene ra ti  on, 

S t e f a n  (*) was the first t o  g ive  a publ i shed  d iscuss ion  

of a one-dimensional t r a n s i e n t  conduction problen with phase 

change, f o r  a s i n g l e  component o r  e u t e c t i c  composition with 

constant p r o p e r t i e s ,  Thus, the term "Stefan's Problem" came 

t o  be used t o  describe a one-dimensional conduction problem 

In which a semi - in f in i t e  slab i n i t i a l l y  a t  a cons tan t  

temperature ,  To, has one face maintained at zero temperature 

for time greatee than zeroI For the  s o l u t i o n  t o  the  problem 
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t o  s a t i s f y  the condi t ions  f o r  a l l  t imes,  the i n t e r f a c e  posi- 

t i o n  as a func t ion  of t i n e  has t o  be p r o p o r t i o n a l  t o  t h e  

square r o o t  of the product; of time and t h e  thermal d i f f u s i v -  

i t y  of the material of tho slab. 

st : t o  ( 3 )  considered the  problem of  a semi - in f in i t e  

s o l i d  i n  con tac t  w i t h  a semi - in f in i t e  l i q u i d ,  The r e s u l t a n t  

s o l i d i f i e d  l i q u i d  was regarded as having d i f f e r e n t  p r o p e r t i e s  

from t h e  I n i t i a l  solid, S a i t o  t r i e d  t o  i n c o r p o r a t e  t n e  l a t e n t  

heat as superheat .  His r e s u l t s  disagreed with l a t e r  works. 

PekeA*is and S l i c h t e r  (4) obtained a series s o l u t i o n  far t h e  

s o l i d i f i c a t i o n  of i c e  on an I n f i n i t e l y  long cy l inder .  

Danckwe rts p resen ted  a sys'tem of equat ions  i n  terms 

of a r b i t r a r y  i n i t i a l  and b c m d a r y  cond i t ions  f o r  the tempera- 

t u r e  d i s t r i b u t i o n  i n  a semi - in f in i t e  s o l i d .  The equat ions  

were solved by t r i a l  and e r r o r ,  -1300th(6), like Danckrrerts, 

was more concemed w i t h  ness transfer problems, and t h e  

t a r n i s h i n g  r e a c t i o n  i n  p a r t i c u l a r .  He approximated the posi-  

t i o n  of the moving boundazy by an i n f i n i t e  power series,  

Krei th  and Romie (7) presented  s o l u t i o n s  which app l i ed  t o  

e i t h e r  s o l i d i f i c a t i o n  o r  mel t ing  and which gave the  position 

of t h e  phase f r o n t  and the  temperature p r o f i l e  f o r  a sphere, 

c y l i n d e r  o r  semi - in f in i t e  solid I n i t i a l l y  a t  t he  f u s i o n  

temperature , They assumed cons tan t  temperature g r a d i e n t  and 

v e l o c i t y  a t  the interface, The temperature was determined 

in a dimensionless se r ies  form by a method cf i t e r a t i v e  

approximations , The assumption of C o n s t t i t  v e l o c i t y  was 
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v a l i d  only a t  the  e a r l y  stages of s o l i d i f i c a t i o n ,  

Chambre ( * )  gave a complete s o l u t i o n  f o r  a P r a n d t l  

nunber equal t o  one f o r  t h e  growth of  a solid starting from 

negl ig ib le  i n i t l a l  dimensions with a plane , c y l l n d r l  cal. o r  

s p h e r i c a l  bctuidary, Convection i n  t h e  f l u i d  was a t t r i b u t e d  

t o  the unequal b u t  assumed cons tan t  d e n s i t i e s  In t h e  two 

phases and was s t u d l e d  with the incompressible  Navier-Stokes 

equat ion ,  An ordinary different ia l  equat ion  which i s  a 

func t ion  of the quadra tu re  o f  time was obta ined  f o r  the 

s o l i d i f i c a t i o n  v e l o c i t y  and i t  was only p a r t i a l l y  solved. 

Chao and Weiner ( 9 )  i n v e s t i g a t e d  t h e  temperature d n  a 

so l id  and l i q u i d  wh i l e  the l i q u i d  was be ing  poured. The 

l a t e n t  heat was t r e a t e d  as a "pseudo" s p e c i f i c  heat and the 

s o l u t i o n ,  ob ta ined  by a Laplace t ransform technfque was an 

Integral tha t  was so lved  numerically.  

Idany au thor s  have a p p l i e d  the  v a r i a t i o n d l  technique t o  

which was a (10) heat conduction. The Onsager theorem 

r e c i p r o c i t y  law of coupled phenomena, pe rmi t t ed  c e r t a i n  

' i r r e v e r s i b l e  processes  t o  be expressed in terms of a vari- 

was t h e  first t o  show t h e  (11) a t iona l  p r i n c i p l e .  Chambers 

a p p l i c a b i l i t y  of t he  v a r i a t i o n a l  technique t o  heat conduction, 

used t he  v a r i a t i o n a l  technique t o  (12) Bio t  and Daughaday 

s tudy  heat conduction i n  a melt ing semi - in f in i t e  solid wish 

cons tan t  p rope r t l ea .  The h e a t  i n p u t  was assumed t o  be  con- 

s t a n t  and t h e  problem t r e a t e d  was an a b l a t i o n  problem i n  

which t h e  melt was removed aa i t  was formed, It is charac- 

t e r i s t i c  of "re-entry" problems caused by aerodynamic heating 
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i n  hypersonic  m i s s i l e  f l i g h t  such as occurs dur ing  the re- 

e n t r y  of a space veh ic l e  i n t o  the ear th ' s  ..:tmosphere, 

The heat-balance i n t e g r a l  technique,  an a n a l y t i c a l  

method t h a t  g ives  approximate s o l u t i o n s  t o  a wide v a r i e t y  of 

heat t r a n s f e r  problems, i s  used i n  raany pape r s  i n  the l i t e r a -  

ture. It i a  mostly used f o r  non-l inear  problems t n a t  mus t  

be so lved  e i t h e r  numerically o r  approximately. I t s  b i g  

advantage is tha t  i t  changes the  energy equat ion  from a 

p a r t i a l  d i f f e r e n t i a l  equat ion  t o  an ordinary  d i f f e r e n t i a l  

equation. This method a3 formulated by Goodman ( 1 3 )  is 

dependent upon the d e f i n i t i o n  of a thermal l a y e r ,  which is 

analogous t o  the  hydrodynamic boundary l a y e r  I n  f l u i d  flow. 

It assumes t h a t ,  beyond t h e  thermal l a y e r ,  there is  tempera- 

t u r e  equ i l ib r ium and no heat t r a n s f e r .  One disadvantage of  

this method is t h a t  t he  heat conduction equat'ion is sa t i s f i ed  

only on the average and this average equat ion  is analogous 

t o  the  von Karman arid Pohlhausen ( 1 4 )  momentum i n t e g r a l  

equat ions f o r  boundary-layer theory, Usually,  a gene ra l  

polynomial form of the temperature p r o f i l e  is assumed and 

s u b s t i t u t e d  i n t o  the governing equat ion  of the heat transfer 

problem, which i s  i n t e g r a t e d  over  t he  thermal l a y e r ,  The 

resul t  is a heat-balance i n t e g r a l ,  

t h i s  technique I n  examlnlng the m e l t i n g  of  a f i n i t e  slab 

i n i t i a l l y  below t h e  me l t ing  temperature,  one f ace  of which 

Goodman and Shea (15) used 

I s  sub jec t ed  t o  a cons tan t  heat i n p u t  while the other f ace  

I s  I n s u l a t e d  o r  a t  a cons tan t  temperature.  
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Poots (16) used the in tegra l  method t o  s t u d y  a moving- 

boundary , two-dimerislonal prob lcm i n  which he t reated the 

Inward s o l i d i f i c a t i o n  of a uniform prism, which had a square 

cross-sec t ion  and was f i l l e d  with a l i q u i d  i n i t i a l l y  a t  the  

f u s i o n  temperature. The I n t e g r a l s  were so lved  by numerical 

methods. 

I n  t h e  l i t e r a t u r e ,  there are 'many o t h e r  ana ly t ica l  

approaches and technlques,  many of which app ly  t o  s p e c i a l  

phase-change problems such as t h e  s t u d y  of phase change i n  

alloys.  I n  a l l o y s ,  the complexity of finding the  temperature 

d i s t r i b u t i o n  and the phase f r o n t  v e l o c i t y  is i nc reased  by 

the fact  that  the l a t e n t  heat e f f e c t  no longer  occurs a t  a 

single temperature ,  b u t  over  a range of temperatures.  

, and Adams ('9) are some of  (18) , Rubinshtein (17) Weiner 

the men who have s tud ied  phase changes i n  al lbys .  For an 

alloy, the l a t e n t  heat of fus ion  was mostly treated as an 

i n c r e a s e  i n  t h e  apparent s p e c i f i c  heat of the metal between 

the  l iqu idus  and s o l i d u s  temperatures. The curve of apparent  

s p e c i f i c  heat versus  temperature was approximated by two 

i n t e r s e c t i n g  s t ra ight  lines. The temperature corresponding 

t o  the p o i n t  of i n t e r s e c t i o n  was used t o  d i v i d e  the  phase 

change reg ion  i n t o  two zones f o r  a n a l y s i s ,  

I n  order t o  o b t a i n  s o l u t i o n s  f o r  more g e n e r a l  cases  f o r  

phase cnange problems, numerical  a n a l y s i s  may be t he  only 

has o u t l i n e d  an (20)  feasible technique available. Ducrinberre 

i t e r a t i o n  method which involves  l a y i n g  out  t h e  reg ion  of 
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conduction i n  a grid system and cons ider ing  the c e n t e r  o f  

ea:h g r i d  eleraent as a node p o i n t ,  By making the g r id  

element small, only the  temperatures of' p o i n t s  ad jacent  t o  

a node p o i n t  and t h e  temperature of t h e  mode po in t  itself 

need t o  be considered i n  c a l c u l a t i n g  the  change in tenpera- 

t u re  of t h e  node p o i n t  dur ing  a small time i n t e r v a l ,  

used t h e  % a r p l u s  temperature" technique i n  

an attempt t o  improve the p r e d i c t i o n s  of the  phase f ron t .  To 

account f o r  t h e  heat absorbed a t  the phase f r o n t  u s ing  t h i s  

method, the c a l c u l a t e d  temperature W a s  permit ted t o  exceed the 

a c t u a l  melting temperature  u n t i l  an arbi t rar i ly  s e l e c t e d  

maximum value above the m e l t i n g  temperature was reached. 

When this maximum value was reached, the  g r i d  element con- 

( 2 1 )  M i l l e r  

t a i n i n g  t h i s  p a r t i c u l a r  node p o i n t  was considered t o  have 

melted,  and the  phase f r o n t  was s h i f t e d  t o  the  next  node. 

E h r l i c h  (22)  gave the i m p l i c i t  f i n i t e  d i f f e r e n c e  equa- 

tLons f o r  the  one-dimensional me l t ing  problem w i t h  a v a r i a b l e  

heat f l u x  o r  heat i n p u t  s p e c i f l e d  as 8 func t ion  of tine. 

The i m p l i c i t  equa t ions  were then p u t  i n t o  t r i d i a g o n a l  matr ix  

forms for s o l u t i o n  by Gauss e l i m i n a t i o n  and by back sub- 

s t i t u t i o n ,  S p e c i a l  modified equat ions  were given f o r  nodes 

n e a r  t h e  f r e e z i n g  f r o n t .  In the  p r e s e n t  s tudy ,  the method 

used by Zhrllch t o  formulate  f i n i t e  d i f f e r e n s e  equat ions  t o  

be so lved  i m p l i c i t l y  was used t o  f i n d  the governing finite 

d i f f e r e n c e  equat ions  f o r  t h e  s o l i d i f i c a t i o n  of n-hexadecane 
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d i d  t h e o s e s l c a l  and experlmontal  s t u d i e s  on Pujado (23) 

t h e  mel t ing  of n-octadecane under a d i a b a t i c  condi t ions.  For  

t h e  t h e o r e t i c a l  model, he used a unidlmenslonal model and 

ignored convective e f f e c t s  in t h e  l i q u i d  phase. He developed 

f l n i t e  d i f f e r e n c e  equations which were then solved by 

i t e r a t i v e  methods. 

The i torthrop Corporation r e p o r t s  ' (24,251 presented  a 

survey of tne phase change problems involv ing  s e l e c t i o n  of 

the proper  compounds , e v a l u a t i o n  of p r o p e r t i e s  experimental  

s tudy of d i f f e ren t  t e s t  cells, and t h e o r e t i c a l  s t u d y  by means 

of a h y b r i d  system composed of a f i n i t e - d i f f e r e n c e  e l e c t r i c  

analog and a d i g i t a l  computer. The s tudy was concerned 

principally wi th  thermal c o n t r o l  i n  s p a c e c r a f t  by means of 

t h e  phase change of  f u s i b l e  materials. Some of t h e  physical 

proper ty  data given i n  the Northrop r e p o r t s  was used i n  t h e  

p r e s e n t  s tudy . 
Considerat ions concerning the  m e l t i n g - s o l i d i f i c a t i o n  

problem were summarized by Bann i s t e r  (26) in a NASA Technical 

IJIemorandum. This memoranduka g ives  emphasis on the s t u d y  of 

nuc lea t ion  theory as a basis for the  s tudy of sub-cooling 

phenomena i n  s o l i d i f i c a t i o n  problems. dannister and Ben- 

. t i l la  (27) presented an i n t r o d u c t o r y  paper which combined the  

basic results found In the Northrop r e p o r t s  and the NASA tech- 

nical memorandum. 

Sharma, Rotenberg, and Penner (28)  also have studied 

analy t ica l ly  phase-change problems with variable surface 
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temperatures  They assumed d i f fe ren t ;  temperature profiles 

and assurnec? t h a t  phys i ca l  p r o p e r t i e s  were c o n a t m t .  

One of the most r e c e n t  p u b l i c a t i o n s  on phase-change 

phenomena i s  the  i n t e r i m  r e p o r t  on space thermal c o n t r o l  

s tudy  which was presented  by Grodzka of Lockheed Missiles 

wd Space Company and c a r r i e d  a u t  under NASA sponsorship In 

a program d i r e c t e d  by T, C. Bannis ter ,  I t ' i n c l u d e s  e f f e c t s  

of gravity, magnetic and electi9.c f ie lds ,  and convectlve 

c u r r e n t s  on s o l i d - l i q u i d  phase change. The s tudy  p o i n t s  o u t  

t h a t  the pure  conduction problem with phase change is v a l i d  

as long  as t h e  l i q u i d  phase remzins s tab le  and tha t  n a t u r a l  

convection has t o  be considered a f t e r  the Rayleigh number 

reaches a c r i t i c a l  value of about 1720 f o r  a layer of  f l u i d  

e i t h e r  heated from below o r  cooled from above, . 

Many o t h e r  papers  besides those already hent ioned are 

available on t h e  subJect of phase change. Sorne of them are 

of s p e c i a l  a n a l y t i c a l  i n t e r e s t  f o r  they attempt t o  so lve  

some s p e c i a l l y  def ined  problems of phase change, A f u l l  

review of t h e s e  papera can be found i n  many p l a c e s  i n  the  

l i t e r a t u r e  and e s p e c i a l l y  in a l i t e r a t u r e  s-crvey presented  

by Muehlbauer and Sunderland (30! on "Heat Conduction wi th  

Freez ing  o r  IdeIting," 



THEOFUCTICAL AHALYSIS -- 

Formulation o f  the Problem 

The problem t o  be s t u d i e d  is the  s o l i d i f i c a t i o n  of n- 

hexadecane in a c e l l  of h e i g h t  h and cons tan t  c ros s - sec t iona l  

area I n  t h e  p l ane  perpendiculzs  t o  t h e  axis y of the c e l l  

(Fig, 1). The temperature p r o f i l e  and t h e  ' rate of s o l i d i f i c a -  

t i o n  of hexadecane are t o  be determined using a one- 

dimensional model a long the  y axis, iqon-steady-state eon- 

d i t l o n s  with respect t o  time are assumed, Note that ,  f o r  

a one-dimensional model a long the y a x i s ,  the shape of the  

c ros s - sec t iona l  area pe rpend icu la r  t o  the y axis of the t e s t  

cell is immaterial, provided t h i s  c ros s - sec t iona l  area 

remains cons t an t  throughout the he ight  h of the cel l .  How- 

eve r ,  if the c ross - sec t iona l  area v a r i e s  with '  y,  the 'shape 

of local cross-sect lon3 must be inc luded  i n  the t h e o r e t i c a l  

analysis of the problem and two- or  three-dimensional models 

would be much b e t t e r  I n  such cases. Even i n  a problem such 

as th-,? one t h a t  i s  being  considered here, in which the cross- 

sectional area of the c e l l  remains cons tan t  f o r  a l l  h ,  a 

s o l u t i o n  based on a one-dimensional model does n o t  approxi- 

mate t h e  true s o l u t i o n  as c lose ly  as a no lu t lon  based on 

t w 3 -  o r  three-dimensional model d e f i n i t e l y  would, However, 

the  d i f f i c u l t y  of s o l v i n g  t h i s  problem has d i c t a t e d  tha t  t h e  

first attempts a t  aolvlng i t  be made us!,ng the s impler  
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Figure 1, Axial s ec t ion  of test cell. 
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one-dimensional model. Late r  s t u d i e s  may then be made using 

t h e  more accu ra t e  two- o r  $hree-dimensional mode 1 and 

s t a r t i n g  o f f  f ro% the v a l u a b l e  in format ion  which t h i o  one- 

dimensional s t u d y  will f u r n i s h ,  

The c e l l  which is completely f i l l e d  w i t h  l i q u i d  n- 

hexadecaire, i u  sealed a t  both ends by copper p l a t e s  and has 

its bottom p l a t e  cooled by a coolant  c i r c u l a t e d  by a 

r e f r i g s r a t o r .  A detailed d e s c r i p t i o n  of t h e  se tup  is given 

under "Experimental Eqalprnent and Procedure. The e f f e c t s  

of convection are assuned t o  be n e g l i g i b l e ,  Th i s  is a 

reasonsble  assumption, s i n c e  convect ive mixing that w c u r s  

wnen s o l i d i f i c z t i o n  i s  t a k i n g  place is minimized by having 

the c e l l  cooled from the-bot tom so t h a t  the solid formed a t  

the bottom of the  c e l l  reiaalns a t  the  bottom, Another source  

- of convection i n  the c e l l  is the-novenent  of *the interface 

between the  solid arid liquid phases, When t h i s  I n t e r f a c e  

advances a d is tame dY in the y d i r e c t i o n ,  t h e  mass of s o l i d  

formed p e r  un3 t c ross - sec t iona l  area of c e l l ,  p,dY, is 

der ived  from an equal mass of liquid which has disappeared. 

This corresponds t o  a th ickness  ( 2,/pL) dY of l i q u i d  which 

has disappeared, Thus %he l i q u i d  moves w i t h  a n e t  v e l o c i t y  

u If' there i s  no changt? 

In vobume dur ing  s o l i d i f i c a t i o n ,  uy = 0,  and convective 

e f f e c t s  may be neglected.  Also, i f  the dens i ty  p of s o l i d  

is c lose  t o  the dens i ty  pL of l i q u . i d ,  then u 

- 

dY 
3% (1 - p,/pL)= along t h e  y axis. Y 

s 

is  approximately Y 



equal t o  zero  and convective e f f e c t 3  may b e  neglected, This 

l a t e r  case holds f o r  n-hexad.ecane, and n e g l e c t i n g  convective 

e f f e c t s  f o r  t h i s  one-dimensional model should n o t  i n t roduce  

high e r r o r s  i n t o  the solution, 

It i s  further assumed t ha t  t h e  c e l l  and Its contents  are 

i n i t i a l l y  a t  ambient temperature and t h a t  as time i n c r e a s e s ,  

the temperatures of the  i n s i d e  f a c e s  of the bottom and t o 2  

plates of t h e  cell are func t ions ,  f,[t) and f2(t), of time 

r e s p e c t i v e l y ,  Tnc height  h of the c e l l  is def ined  as the 

d i s t a n c e  alond the y axis' from the i n s i d e  f ace  of the bot+,om 

plate t o  the Inside f a c e  of t h e  top p la te ,  The o r i g i n  of 

the y axis is y = 0 a t  the i n s i d e  f a c e  of the b o t t o n  plate 

and the positive y d i r e c t i o n  is towards the  top plate, iJote 

that , by these d e f i n i t i o n s  knotfledge of t h e  temperature 

profiles of the  I n s i d e  faces of the bottom and top plates of 

the ce l l ,  say by polynomial f i ts  of experimentally- determined 

temperatures of  these faces, makes j.3 urmecessary t o  write 

energy balances on t h e  copper plates themselves i n  o r d e r  t o  

s o l v e  the problem for n-hexadecane. The top plate AS exposed 

t o  room temperatare a t  a l l  times. 

The heat t r a n s f e r  problems for  n-hexadecam are divided 

Into two p a r t s ,  arbitrarily, as follows: 

1) "Pre - so l id i f i ca t ion"  problem; i t  considers heat trans- 

of the bottGb: p l a t e  13 i n i t i a t e d  t o  the t i m e  (t = t*) when 

the e q u i l i b r i u m  temperature of  s o l i d i f i c a t i o n  of n-hexadecane 

I s  reached a t  t he  bottom p l a t e ,  
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2 )  "Pos t - so l id i f i ca t ion"  problem; i t  cons iders  heat  

transiW I n  s o l i d  and liquid n-hexadecane and t h e  rate of 

formation of s o l i d  n-hzxadecane from the  time ( t  = t*> 

when the  e q u i l i b r i u m  terdperature of s o l i d i f i c a t i o n  of n- 

hexadecane is reached a t  the bottom plate  t o  a i a w r  time 

when the e n t i r e  conten t  of the c e l l  I s  frozen. 

Pre-s o li d i  f i ca t  1 on p rob lem 

Since convectlve effects  are neglec ted  and a one- 

dimensional model is 

i n i t i a l  

L U 

and boundazy 
c. 

considered,  t he  governing equat ion ,  

cond i t ions  are f o r  0 0 < t - < t*, 

* 

f l ( t )  when y - 0 

f 2 ( t )  when y * h 

a t  t - 0 ,  for  0 

T, is ambient o r  room temperature which is assumed t o  be con- 

stant, aL is thermal d i f f u s i v i t y  of l i q u i d  n-hexadecane and 

I s  given by aL = KL/pLcpL. ~ u h a c r i p t  L refers t o  liquid 

n-hexadecane, and s u b s c r i p t  G refers t o  the  p r e - s o l i d i f i c a t i c n  

problem. Thus T is t he  temperature of liquid n-hexadecane 
LO 

and c are the KL, oL, PL f o r  the p r e - s o l i d i f i c a t i o n  problem. 

of l i q u l d  n-hexadecane 



Conditions (i) and (ii) s ta te  that  the temperatures of 

the bottom and top p l a t e s  are some fuiic$ions of t h e .  The 

I n i t i a l  condi t ion  (lii) state3 t h a t ,  a t  the time t h a t  cooling 

of t h e  bottom p l a t e  i s  j u s t  about t o  be i n i t i a t e d ,  i , c ,  a t  

t = 0, the temperature of the l i q u i d  hexaaecane i n  t h e  c e l l  

I s  the sane as t h e  ambient (room) temperatwe fcir the e n t i r e  

h e i g h t  of t h e  cell, Thus, the temperature p r o f i l e  TLo(y,t)  

m a y  be obtained for 0 < t < t* and 0 - < y - < 11 by a n a l y t i c a l  o r  

n u i e r i c a l  i n t e g r a t i o n ,  once Ta, f l ( t )  and f 2 ( t )  are known, 

Note t n a t ,  a t  t - 0, f l ( t )  = f2(t) = Ta; at t = tn, fl(t) =: Te, 

where T, i s  t he  equi l ibr ium temperature of s o l i d i f i c a t i o n  of 

0 0 

n-hexadecane, fl(t) and f2(t)  m a y  be obtained by dObg least- 

squares-polynomial fits of t e n p e r a t u r c s  of the inside f aces  of 

the  bottom and top  plates as neasurcd with r e s p e c t  t o  time by 

copper-constantan thermocouples, with time s e t  equal t o  zero 

a t  the s t a r t  of coo l ing  of t h e  bottom p l a t = .  As u i l l  be 

shown when the results of the p r e s e n t  s t u d y  are discussed,  

f l(t)  and f2 ( t )  turn out ,  for this p a r t i c u l a r  s t u d y ,  t o  be 

exponen t i a l  functions of' the type A t i3e 

B are cons tan t s  that  add up t o  t he  ambient temperature; A 

, where A and  
- M t )  t>  

equals the s teady  s t a t e  temperature of the coolznt which is 

c i r c u l a t e d  by a r e f r i g e r a t o r  t o  cool the bottom plate,  The 

func t ion  c ( t )  I s  a polynoinial of degree less than or equa l  

t o  5 which is determined by the f i t t i n g  computer program, 

Pos t-s o l i d l  f i c a  t Ion  p rob lern 

A t  time t - t o ,  the temperature of the bottom p la te  i s  
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equal t o  the  equ i l ib r ium t e n p e r a t w e  of solidification of 

n-hexadccane, L e , ,  f l ( t * )  = 5' 

all liquid, Its  temperature prof112 at this p a r t i c u l a r  

I n s t a n t  13  TLo(y,t*). 

and the  n-hexadecanc is s t i l l  e 

For t>t", t h e  heat transfer problem 

becomes 

s u b j c c t  to t h e  f o l l o w i n g  cond i t ions  : 
I 

(I) T,(Y,t) * TL(Y, t )  * T when y = Y(t) e 

( i v )  Y ( t * )  - 0 a t  t t* 

( v )  TS(O,t*) = fl(t*) = T Lo ( O , t * )  = T, at  t = t*, 

( v i )  TL(h, t*)  * T (h , t* )  = f2(t*)  a t  t = t%, y = h Lo 

( v l i )  T,(O,t) = f l ( t )  a t  y - 0 for t - > t3 

( v l i l )  TL(h , t )  - f2(t)  a t  y = h for t LI > t9 

Y ( , t )  is the  height  of s o l i d  which has been formed from 

time t = t* to time t = t and i s  measured from the  inside 

face of tlra bottom p l a t e  up along the y axis t o  the i n t e r f a c e  

s e p a r a t i n g  l i q u i d  and s o l i d  hexadecane. Conditions (i) , (ti) 
and (iv) deElcriba the  interface,  Condition (i) say0 that ,  at 
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t he  I n t e r f a c e ,  the temperature of the s o l i d  phase equals t h e  

temperature of tile l i q u i d  pnase for a l l  t o  Condition (11) 

states that the ra te  of  heat l i b e r a t i o n  a t  t n e  i n t e r f a c e  by 

f r e e z i n g  mus t  equal the n e t  rate a t  which hea t  i s  conducted 

away i n t o  s o l i d  and l i q u i d  phases, Hf is  the  heat of fus ion  

of so l id  iiexadecane per  u n i t  mass. Subsc r ip t s  s and L r e f e r  

t o  tne p r o p e r t i e s  of solid and l i q u i a  phases r e s p e c t i v e l y ,  

Condition ( i v )  s ta tes  that a t  time t = t* when the temperature 

of the cooled bottom p l a t e  f irst  reaches the e q u i l i b r i u m  

f r e e z i n g  temperature of n-hexadecane, t h e  amount of solid 

p r e s e n t  i s  zero,  i , e . ,  the  l i q u i d  hexadecane i s  s t i l l  a l l  

l i q u i d .  Conditions (iii) t o  ( v i )  m a n  t h a t  the temperature 

p r o f i l e  i n  the  l i q u i d  hexadecane dur ing  the p r e - s o l i d i f i c a t i o n  

problem s t i l l  ex is t s  a t  t i m e  t = t*. Conditions ( v i i )  and 

( v i i i )  s tate t h a t  tne temperatures of the bottom and the  top  

plates are func t ions  of time which are also continuous w i t h  

t h e  temperature p r o f i l e s  t h a t  are obtained at these boundaries 

for the p r e - s o l i d i f i c a t i o n  problem; i n  other words, the pro- 

cess  of s o l i d i f i c a t i o n  does not  in t roduce  any d i s c o n t i n u i t y  

between the  temperatures t ha t  are obtained f o r  these bound- 

aries f o r  the p r e - s o l i d i f i c a t i o n  problem and f o r  the post-  

s o l i d l f i  ca t ion  problem, 

Condition (ii) may be der ived  as follows. I n  a time d t  

l e t  dL be th ickness  of liquid that  has  s o l i d i f i e d  t o  produce 

a solid of th ickness  dY. 

unit mass of the s o l i d  and l i q u i d  phases r e s p e c t i v e l y ,  

Therefore  Hf 

(Fig. 21, gives p,dY = pLdL. 

L e t  H, and HL be the  e n t h a l p i e s  p e r  

HL - H,, A mass balance a t  the i n t e r f a c e ,  

Snergy b a 1 a . m  gives 
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Figure 2. Moving interface from time t to t i n e  t + dt. 
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p,H,dY - p ~ dL = q,dt - qLdt,  where q, and qL are heat 

fluxes per u n i t  time per unit cross sect ional  area of solid 
L L  

and l i q u i d  phases respectively.  All these equations have 

been writter independent of the cross-sectional area because 

the cross sectional area of the c e l l  is constant and is the 

same for  both the s o l i d  ,and liquid phases, When the defini- 

t i o n  of Hf, and the masa-balance equation ,re introduced into 

the energy-balance equation, the following equation is 

ob t alne d : 

aTL anti qL = -KL 0 By PouTiervs law of  conduction, q, - -iC8 

Putting these definit ions for q, and qL i n t o  equation ( 3 )  and 

dY , Which IS rearranging it ,  w e  get K - aT, - K - aTL = tifp, E 
aY aY 

condl t lon (ii) 

The following dimensionless variables are defined. 

S - Y/i i  

TO - (aL/h2)t 

The s u t h c r i p t s  0 ,  L, and s s t i l l  apply as previous ly  defined. 

In dimensionless form, the governing equations of the pre- 

so l id i f i ca t ion  problem become, for 0 - .  < to 5 T~ 
* 
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A l s o  the governing equations f o r  the pos t - so l ld i f i ca t lon  

problem become, for  T > 0 (or equivalently,  for T >T 1, I) 

n 0 0  

.. a t  

a2eL(z,T) aeL(z,~) 

a z2 a r  1 for S c z < 1.0 (5b) 

sutiJect t o  the following condit ions:  

(I) e,(s ,r)  - eL(s,T) 0 1.0 at z = S for T - > 0 

(vi) eL(1,8) - f 2 ( r  = o)/T, 111) eLo(i.o,o) when T - 0 

where ’ X a8/uL 
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The dimensionless equatioiis are now t o  be put  I n t o  f i ~ ~ l t e  

difference forms, The method of L, W ,  Ehrlich (22 )  I s  used t o  

do t h i s  
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Figure 3. Axial sect ion of test cell showing space grids 
and nodes, 
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Fin i t e  Difference Formulation of  Govcrrdng Lquationa 

The Taylcw series expansion of a function f(x+a,y+b) 

about  a p o i n t  (x ,y )  is 

+ R  n 

1 a a n  
no ax aY where Rn - ,(a - + b -1 f(x+ya,y+Yb), with 0 

0 .I Y - < 1, L e ,  €$ = O(a+b)". The synbol O (  1 means '*of the 

order  of what is enclosed I n  the  brackets." For t h i s  problem, 

we impose a mesh on the t e s t  cell,' such that the space g r id  

c - < 1 and 
cc 

is vertical  along t h e  height of the c e l l  and time g r id  is 

hor izonta l ;  that IS, the time g r i d  i s  perpeneicular t o  the 

space gr id ,  On the  ( 2 , ~ ~ )  or the (2,~) cooA-dlnates, the 

following are defined (see Pig. 3 and Pig, 4): 

= bz = mcsh size i n  the  space coordinate ha 

P - ka/(ha 1 

(*Ji,J - 8,(ih,,Jk a 1 

( OL) 1 eL(iha,Jk,) 

k, -  AT^ = AT = mesh s i z e  In the t i m e  coordinate 
2 

OL0)i ,J = OLo!iha#Jka) 

J,3 
c 

derivatives 
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t O(h 2 
a (9) 

The d i f f e rence  equat ions are t o  be derived in t he  i m p l i c i t  

form so t h a t  they may be solved us ing  t r i -d iagonal  matrix, . 

Gauss e l imina t ion  and back-subst i tut ion.  On s u b s t i t u t i n g  

equat ions (7) and (10) i n t o  equat ion ( 4 ) ,  we get 

3 



Figure 4, Two-dimensional f i n h e  elements I n  time and 
apace coordinates. 
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On s u b s t i t u t i n g  equa t ions  ( 8 )  and ( 9 )  i n t o  equatlon ( 4 ) ,  we 

get  

1 + O(h 2, + O(k,) a + ( e  Lo 1+1,j 

Addition of  equat ions  (11) and (12) y i e l d s  

Using t h e  d e f i n l t i o n  for p i n  equation (13), we get 

3 2 + O(k 1 + OWaha a (14) 

3 2 -  The local error term i n  equat ion (14) I s  0(ka ) + O(kaha ). 
# 

Therefore t h e  governing pre-so l id i f icat ion equat ions become , 
for 0 0 < to 2 TO’ c 

I 

+ 
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subject t o  the following conditions : 

where 1J I s  the t o t a l  number of nodes i n  the space direct ion 

w i t h  the f irst node on the bottom plate  and the  idth node on 

the top p la te ,  

Post -so l id i f icat ion Problem 

. 

6 
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’ }  t O(h ) a R + l , J + l  - 8L 

2 + O(h, 
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ae I *MD + O(k,) 
R - 1 ,  j+1 R - 1  a 

2-x aeL 
R + l , J + l  (-r interface ,  j+1 

1-x 

R+2,3+1 
3+1 eL 
2-xjtl 

a 

+1 1 ae (4 = - {  az interface , j+ l  ha l txj+l  

n 

. 
1 

dz interface ~ + 1  2ha R-2 ,J+1 

ae 
(4) = - U1+2xjt1)e, 
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a 8L (-1 i n t e r f a c e ,  

Tne governing equat ions f a r  the pos t - s o l i d i f i c a t i o n  

or  f o r  ‘I > 0 .  Equations (16)  it problem apply f o r  T~ 2 f 0  
u .  

through (39) are obtained by Taylor s e r i e s  expansion around 

the po in t s  where the  d e r i v a t i v e s  are t o  be found, Equations 

(16) through (23) app ly  t o  the s o l i d  arrd liquid phases for 

nodes n o t  nea r  the so l id - l iqu id  i n t e r f a c e ,  For regions nea r  

and on the i n t e r f a c e ,  these equat ions have t o  be modified, 

Equations (24)  through (31) are such modified equat ions t ha t  

apply nea r  the i n t e r f a c e ,  Equations (32) t o  (38) apply  a t  

the s o l i d - l i q u i d  i n t e r f a c e  i t s e l f .  &quation (39) desc r ibes  

the rate at which trolid of dimensionless height S is formed, 

Equations (16) t o  (23) are obtained by exac t ly  the same 
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opera t ion  t h a t  yielded equat ions  ( 7 )  t o  ( 1 0 )  and when t h e y  

are s u b s t i t u t e d  i n t o  cquaf ions  (5a) and (5b) i n  the same way 

tha t  equations ( 7 )  t o  (10) were s u b s t i t u t e d  i n t o  equat ion ( 4 )  

the  fo l lowing  equat ions  r o s u l t :  

t 0 (k 3 ) + O*(kaha 2 
a 

It is t o  be emphasized again that  these equat ions are good 

for nodes not near the  I n t e r f a c e ,  

For nodes n e a r  the  s o l i d - l i q u i d  i n t e r f a c e ,  we proceed 

as follows. Suppose t h a t  t h e  d i s t r i b u t i o n  of temperature 
th and t h e  p o s i t i o n  of the f r e e z i n g  f r o n t  are known f o r  the j 

time s t e p .  Suppose a lso t h a t  the  position of the f r e e z i n g .  

f r o n t  f o r  the (j + 1)st time s t e p  has been estimated; t h e  

s e c t i o n  under "Solut ions of Governing Finite Difference 

Equations" wlll i n d i c a t e  how t h i s  e s t ima t ion  i s  done. Define 

R as t h a t  space node on the  moving i n t e r f a c e  o r  j u s t  below 

i t ,  f o r  a given time s t e p .  R varies with time s t e p .  Thus R 

may be be t t e r  labelled as R 
3+1 

f o r  the Jth G i m e  a t e p  o r  R 3 
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+. - - (J+l)st  time Lcp. R corresponds t o  the nuiiioer of 

Zull space nodes t h a t  have s o l i d i f i e d  f o r  a given time step. 

The fol lowing cases, each of which 13 i l l u s t r a t e d  by f i g u r e s  

A)  The f r e e z i n g  front does not cross a space gr id  l i n e ,  

t h a t  is ,  the f r e e z i n g  f r o n t  l ies  e n t i r e l y  between two space 

g r i d  l i n e 3  

B) The f r e e z i n g  f r o n t  crosses one space g r i d  l i n e  

C) The f r e e z i n g  f zon t  crosses two space g r i d  l i n e s  

D) 

g r i d .  Xnes.  

The f r e e z i n g  f r o n t  c ros ses  three o r  more space 

Each case requires special equat ions  for the p o i n t s  n e a r  

t he  i n t e s f a c e ,  that is, t o r  the points marked with n C n  In 

figures (5) t o  ( 8 ) .  Let :c3 be the  f r a c t i o n a l  p a r t  of t h e  

space mesh between the f r e e z i n g  f r o n t  and the'node i = R  dur ing  

the jth time step. Ac was stated earlier,  R may vary with 

the  time s t e p  s i n c e  i t  i s  always the  node a t  or nearest the 

freezing f r o n t  i n  Cne solid phase during a given time step. 

Let aR ba the  f r a c t i o n a l  pa r t  of time gpld  t ha t  lien between 

t h e  p o i n t  (R, J+1) and t h e  i n t e r s e c t i o n  of the f r e e z i n g  

f ron t  with the space grid l i n e  at i = R  dur ing  t h e  ( J + l ) s t  time 

s t ep .  - 

- Case A: Figure (5) i l lust rates  t h i s  case. Equations 

(24; and (25)  obtain a t  (r, Jtl). O r  s u b s t i t u t i n g  equat ions  

(24)  and (25) I n t o  equat ion (5a) ,  we ob ta in  
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Figure 5. Case A: Interface does no t  cross a apace grid 
l i n e  

Figure 6.  Case B: Interface crosses one space g r i d  l ine.  

c 
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+a- 
3+1 

l+X (42) 

2 Error = O(k, ) + O(Xk,h,) 
which is the modified equation for  the s o l i d  phase f o r  riodes 

near the interface and it  holds good f o r  R e > 1. On s u b s t i t u t -  

ing equations (26) and (27) i n t o  equation (5b), we obtain  

( 2 - ~ ~ + ~ )  (1+2p-x ) e  -2p(i-x ) e  
LR+ 1, j + 1 3+1 LR+2 ,J+l 

2 Error O(ka ) + O(haka) 

whhh i s  the  modif ied  e q x i t i o n  for  the l iquid'phase  f o r  nodes 

near the frsezing f ront  and it  ho lds  good for 0 5 R I )  e N-2.  

Case B: Figure ( 6 )  i l luatrates  Case B. On s u b s t i t u t i n g  

equations (28) and (29)  i n t o  eq 'cion (5a), we get 

Error  = O(k 2 ) + O(Xk,h, 2 
a 

0x1 s u b s t i t u t i n g  equations (24)  and ( 3 0 )  Into equation (5a), 

we get 

J + l  
1t x 
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where aR has the  def init ion that has already been g iven arid 

for  t h i s  case i t  has a magnitude 

obtained by the theorem of  similar triangles and the geometry 

of figure (6). Equations ( 4 4 )  and ( 4 5 )  apply t o  the s a l i d  

phase near the interface,  Equation (43)  s t i l l  holds for the 

l i q u i d  p h x e  i n  this case'. 

- Case C: Figure (7) illustrates Case C. On subst i tut -  

ing equztlons (28)  and (31 )  i n t o  equation (5a), we get 

2 2 Error = O(k, ) + O(kaha k) 

On siabst i tut ing i-R-2 Into equation (16), we get an equation 
328, 

az  a t  
for (-) Also on replacing R by R-2 i n  equation 2 R-2,j+l' 

(25) we get an equation for  ($)R-2sJ+le 

equations are subst i tuted into  equation (5a) ,  we get 

When these two 

+( 1+2Xp) 6, -xp 0 - 8  . (47) R-3,3+1 R-2 # j+1 'R-1, j+l 'R-2 ,j -XP 0, 

Error = o(k 2 .  ) + O(Akaha 2 
a 

t 

Equations ( 4 3 )  and (45)  a t i l l  apply t o  the l i q u i d  and solid 

phases, respec t ive ly .  For Case C, aR - x3+1 m - x j  + xj+l) - (l+x )/(2-x + x ) fractional part of the 
and a R - l  3 + 1  d 3 + 1  
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Figure 7. Case C: Interface crosses two q w x e  grid l i n e s .  

Figure 8. Case D: Interface crosses three OP more space 
grid l ines .  . 
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time g r l d  between t h e  p o i n t  ( H - 1 ,  Jtl) and the i n t e r s e c t i o n  

of the f r e e z i n g  frcnt w i t h  t h e  space Gr id  l i n e  through R-1,  

during t h e  ( j + l ) s t  time s t e p ,  R i s  an i n t e g e r  such t h a t  

Case D: Figure (8)  i l l u s t r a t e s  tnis case,  When t h i s  

occurs ,  the time step i s  first reduced t o  ha l f  13s normal 

value and the ee t imated  p o s i t i o n  of t h e  f re5z i r -g  front is  now 

checked t o  see if any of  cases  A to C occurs ,  i n  which case  

the  appropr i a t e  equat ions  under cases  A to C are used, I f  

the i n t e r f a c e  s t i l l  c ros ses  three o r  more grid lines, the 

t i m e  s t e p  i s  s t i l l  reduced f u r t h e r  by a hal f ,  The new 

f r e e z i n g  f r o n t  I s  checked a g a i n s t  cases  A t o  C, This  process  

is repeated un t i l  one of cases  A t o  C is obtained, a f t e r  which 

the regular f u l l  time s t e p  I s  r e tu rned  t o  again,  

S p e c i a l  approximations must be  used t o  ob ta in  the der iva-  

t i v e s  t o  be used i n  the i n t e r f a c e  cond i t ion  of equat ion  (5)  

(il) which i s  sat isf ied a t  t h e  i n t e r f a c e ,  Equations (32 )  t o  

(39)  are these s p e c i a l  approximations,  They are obta ined  by 

appropr i a t e  combinations of Taylor series expansions of 

2emperatures a t  the  i n t e r f a c e  f o r  the  (;+l)st time s t ep ,  

When they are app l i ed  t o  equat ion  5 ( l l ) ,  under ccindltions 

J+1 Of d i c t a t e d  by the values of R and x ~ + ~ ,  the height S 

s o l i d  formed at any given  ( j+ l ) s t  time s t e p  m a y  be obtained. 

The foregoing  f i n i t e  d i f f e r e n c e  equat ions  which have 

been obta ined  f o r  the p o s t - s c l i d i f i c a t i o n  problem ~1.11 nod 
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be arranged according t o  the groups in which they are used t o  

obtain the p o s t - s o l i d i f i c a t i o n  temperature prof i les  of  solid 

arid liquid n-hexadecane: For the solid phase the following 

grouping h o l d s  good : 

(I) If R ( J + l ) - R ( J )  = 0 8 (this corresponds to Cage A ) ,  

(a) if R ( j + l )  = 1 the governing equation is 

(b) if R ( j + l )  3 2 ,  the governins equations are 

2Xp. 
J + l  

' X  3 + le%, J + l + x  

(1%) If R ( J + l ) - R (  j) L* 1, ( t h i s  corresponds to Case B ) ,  

then 

(a) if R ( J + l )  = 1, the governing equation I s  

(50) 

xJ+l + 2xp 

3+1  l + x  .I 

an (51) 
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(b) if R( j+l)  - 2 ,  the governing equations arc 

R 8 j t 1  

2Apx 
t(2Xp + 

~ - 1 , 3 + 1  
0 j+l e, 

Itxjt1 

a 32, 2AP 
l + X  aR j+1 

where aR s t i l l  has the same value as in part (a)  

ab OW e 

( c )  If R($+l)L3, the governing equations are 

(53) 

. .  
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aR s t i l l  has the  same value as i n  parts (a )  and 

(b) above. 

(iii) if R ( J + l ) - R ( J )  = 2 ,  (this corresponds to Case C), 

then R ( j t 1 )  2 2, 

(a)  If R( jtl) = 2,  then the governirrg equations are 

xJ+l + 2XP 

3+1  
l+x  'R 

(b) i f '  R ( j t 1 )  * 3, the governing equations are 



- 2 x p x  
2 0  

J + I  
t(2Ap t 

R - l , j + l  "H b 3 + 1  S 1t x 

where zR-l and aR have the  same va lues  as i n  . u?t (a )  

above , 

( c )  if R ( J + 1 )  .I > 4 ,  the governing equat ions  are 

where aR 0 

and (b) above, 

( i v )  

and aR s t i l l  have tho same vzilues as in parts (a) 

If R ( J t 1 )  - R ( J )  r-P > 3 ( t h i s  corresponds to Case D), 

we h a l v e  t h e  time s t e p ,  make a new estimate of R ( J + l )  and 

check i f  R ( J + 1 )  - R ( j )  has a value that w i l l  sa t i s fy  one of 

cases ( A )  to ( C )  which we have already treated, If one of 

these cases a p p l i e s ,  we use the corresponding group of 



equat ions f o r  i t .  If none of t h e  cases has occurred y e t ,  we 

again halve the new time increment and continue doing t h i s  

u n t i l  one of cases  A t o  C has occurreci, After using the 

appropr i a t e  equat ions  t o  ca l  c u l a t e  temperature p r o f i l e s ,  we 

r e t u r n  t o  the  r e g u l a r  time increment f o r  tine nex t  time s t e p .  

For each of the  groups of equat ions  above, the follow- 

ing boundary and i n i t i a l  condi t ions  apply:.  

.fk For i = 0,  8, - B,(o,o) = 1 when T-0 o r  T ~ - T , ,  
' 8 O  

(67) 

For the liquid phase, no matter the value of R ( J + l )  - R(J), 
the  fol lowing groupings hold, 

(a) If 0 '< I R( j+l) 5 i?-3 where N is the t o t a l  number of 

space nodes (from 0 a t  the bottom plate  t o  It a t  the top p l a t e ) ,  

then the governing equat ions  are 

-2p(l-x ) e  
J+l LR+2,j+l 

(2"xj+l) (1+2p-x 1 e 
!+I . L~+l, j+1 

= (2-x )(l-xj+l)e +2P 
3+1 L R + l  , j 

6 LAi ,$+l ( 2 j + p e !  
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Equation (71) is a boundary condi t ion which I s  sa t i s f i ed  a t  

the top plate.  

(b) If R ( J + l )  = id-2, the governing equatior!s are 

(2-xj+l)(l-x ) e  L R + l , j  +2P 

(c )  If R(J+1) = N-1, the  governing equat ion i s  

(d! If R ( j + l )  = 14, then the  e n t i r e  content  of t he  c e l l  

has so l id i f i ed  w i t h  the top p l a t e  Just at the equi l ibr ium 

temperature of s o l i d i f i c a t i o n ,  The i n i t i a l  condi t ion  f o r  all 

the  foregoing groups of  equat ions is 

8 = eLo(iha,T:) for o 5 I N 
L i , O  - eLo(o,To) * - 1 at the bottom p l a t e .  
OB0 

*L 

(75) 

For the  ca l cu la t ion  ..of Sj+l, the  height of solid which 

has formed a t  the (j+l)st  time s t e p ,  t h e  fol lowing equatio-ns 

apply: 

For 0 < x < 1 and 0 .I < R - < N, equat ion (77) a p p l i e s  - j+1- 

A 1 8 0  whm the  appropr ia te  d e r i v a t i v e s  from equat ion (32) 

through equation (39) are s u b s t i t u t e d  i n t o  condi t ion  ( 5 i i )  

of t h e  pos t - so l id i f i ca t ion  problem, equat ions which apply 
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. 
are obtained f o r  Sj+l. 

3 + 1  
for  certain values of H ( J + l )  and x 

Thus 

(a) if 1/4 < xj+l - < 3/4, we get 

+ hap(Mos-JaL)B for 1 < R 14-2 (78) J+1 - sJ - .  - S 

+ haP{PIa -J( 0 -1)/( l - X j t l )  iD for  R=iJ-l (80 )  

0 < 3/4 were set so as t o  avoid d i v i d i n g  

j+1 = sJ s -  Li4 # j+ l  
and S 

The l i m i t s  of 1/4 0 < 

by numbers close t o  or equal t o  zero which would make the 

results blow up. 

(b) If 0 < x < 1/4, we use - J+1 - 

so that 

or  

or 



or  

or  

or 

or 

where b = 1/4 

Trid iagonal  Matrix or Jacobi Forms of Finite Difference 

Equations fo r  Temperature 

Each of the  groups of f i n i t e  d i f f e rence  equations f o r  

tempera:ure that  desc r ibe  both the  p re - so l id i f i ca t ion  and the  

pos t - so l id i f i ca t ion  problems can be arranged in Jacobi  o r  

t r l d i a ,gona l  mat r ix  e q ua t i ons of the - do B 8  +c e 
0 O , J + l  0 l,J+l 

form 

where Ai@ B i 8  

d i f f e rence  q u a t i o n s  themselves. Note t ha t  i n  using equat ion 

and di are cons tan ts  obtainable  from the 

( 9 2 ) ,  we are c a l c u l a t i n g  8 f o r  t h e  (3tl)st time s t ep  b 3 + 1  
f o r  the  J t h  time s t e p  is known 

i ,3  with  the  assumption t h a t  8 

f o r  every I. Thus, f o r  the pre - so l id i f i ca t ion  prclblem, 
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equation (15) and Its boundary and I n i t i a l  ccndlt lons l 5 ( l )  

t o  1 5 ( i i 1 )  can be rearranged i n t o  equation ( 9 3 )  

so  that f o r  the (J+l)st time s t e p ,  the c o e f f i c i e n t s  of equation 

(92) take on the  values i n  equation (93) of 

Bo = 1 

di is  easily obtained since ( 6  

for the Jth time s tep .  

) i s  known f o r  every I 
* Lo 1 , 3  

The above equations apply f o r  O<T*T,. CI 

For the p o s t - s o l i d i f i c a t i o n  problem, we consider the 

equations according tq the way In which they were grouped 

i n  the previous  s e c t i o n .  

or ~>0,(i) - i f  R ( j + l )  - R(j) - 0,  then 

Thus for  the solid phase, for T >.ti 
0-0 



. . -. 

(a )  i f  R ( j + l )  = 1, e q u a t i o n  (48) and the boundary con- 

d i t i o n  (66) give 

1300,0, j+1 = do 

a dR R $ R , J + l  
t n e  A 8  R 'R-I. , j+l  

where Bo = 1 

c, - 0 
do a (fl)j+l"Je 

(94) 

and 

(b) if R ( j + l )  2 2,  the boundary conditior,  (66) and 

equations (49) and (50) give . 
- = d  

0 
B 8  

. o 3 ~ , ~ + 1  

A 8  +B 8 tc e = d i '  for 1 0 < i V < R-1 (95) 
si-l,jtl. i 3i , j+1  1 %+i,jti 

SR-1, j+1 %,J+l ,I dR A 8  +B e 

where B 0 = 1, co = 0, do = (fl)j+l/'e 

% 
Ai - -Xp/2 f o r  1 - < i 0 < R - 1  

= 1 + Xp for 1 m < 1 L < R - 1  - -Xp/2 for 1 0 I 0 < R-1 

a -2Xpx 2 
3+1 

An l + X  
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(ii) if H ( j + l )  - R(J) = 1, then 

(a)  i f  H ( j + l )  

equation ( 5 1 )  give  

1, boundary cond i t ion  equation ( 6 6 )  and 

0 

* dR 

B O  * d  
O a o , j + l  

A 9  t E, e 
R ' R - l , j + l  ' R , J + l  

where B 0 = 1, do = ( f ' ~ ) ~ + ~ ' T e ~  c 0 = o  

U 21p + xJ+1 = 2xp + l-xg+xj+l 
dH l+xjtl aR l + x  

3 + 1  

(b )  i f  R ( j t 1 )  = 2 ,  equations (52) and (53) together with 

the boundary condition give 
0 

0 
~e = d  

8 5 0 ,  j+1 

tB 6 dR A 0  
' R - l , j * l  R ' R , j + l  

where Bo = 1; do * (fl)J+pe; co = o  (97)  



( c )  if R ( j + l )  - > 3 ,  equat ions  (54), (551, and (56) together  

with the  boundary condi t ion  give 

+B e +ties = d for 1 u < i - e R-2 i i+l, jt1 
A 8  

%-l,j+l. %,jtl 

~e +B e 
' R - l , J + l  " R , ; I t l  

(ill) If R . ( j + l )  - R ( j )  = 2 ,  then 

(a) if R(j+l) = 2, equations (57), ( 5 8 ) ,  andi (66) give 

B e  
0 so, jt1 

= d  
Q 

where Bo, dc;, and Go have the same values as i n  p a r t  (ii) 

above ; 
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3 + 1  
2 1 p + x j + l p 2 x p + 2  - X p c  

3 + 1  
l+x U 

dR l + x  3- aR 
I 

(b) If R ( J + l )  - 3,  equations ( 5 9 )  t o  (60) plus the 

boundary condit ion equation ( 6 6 )  give 

same values as i n  part (a)  above, .. 

(c )  i f  R ( j t 1 )  0 > 4, equations (62 )  to (65) and equation 

(66 )  g i v e  



Go 

~e t B 0  
R 3 ~ - 1 , j + 1  ' R , j + l  " dR 

For the  l i q u i d  phase, i f  

(a) 0 2 R ( J + l )  5 If-3, then equations ( 6 9 )  t o  (71)  give 

d R t l  

where 

(b) If R(Jt1 )  = iJ-2, equations (72)  and ( 7 3 )  give 
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where B R t l ’  ‘R+18 dJ3t1’ 

part  (a)  ’above. 

and diJ have the same values as In 

( c )  i f  3(j+1) = 2-1, then 

and the  temperature p r o f i l e  for 0 u < I c N - 1  13 obtained from 

t h e  s o l i d  phase, 

Solutiolis of Governing F i n i t e  Difference Equations 

Each of the tr id lagonal  matrix equations ( 9 3 )  t o  (103) 

has a so lu t ion  given by the s o l u t i o n  of equation (92)  as 

f ollotts : 
(. 

d0 
where qo bo - Co/B, 

Equation (105)  appl ies  as i t  i s  t o  the pre - so l id i f i ca t ion  

problem for 0 m < -c0 V < T:. 

equation (105)  becomes f o r  the solid phase 

For the p o s t - s o l i d i f i c a t i o n  problem, 

q R  8r  
“R, j+1 
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We star t  a t  time f 0  = 0 t o  so lve  the pre-so l id i f ica t ion  

Thus, for 3 = 0 ,  (6Lo)i,o - Ta/Te for. 0 0 < 1 0 < 14. problem. 

Tnus we can f i n d  the  temperature profile, ( BLo)i,l, for every 

i by using equation (105) s i n c e  a l l  the constants  are now 

known. 

by using the values of ( BLo)i,l, which we have found, t o  cal- 

cu la t e  the constants  t o  be used In equat ion (105). Thus we 

continue ca l cu la t ing  ( e  ) 

given . j  untq 1 3 = j* such tha t ,  a t  the  bottom p l a t e  8 

( e  1 ’ Lo and (eLO)*,j*+l < 1. A t  such a time we have 

reached T:. 

equation 

c _  

For the next  time step ( L e .  pl), we calculate (6L0)i,2 

(for 0 - < 1 .I) < W ) ,  for each LO 1 , j + 1 9  

Lo o, j *  - 
After J* is located,  we ca lcu la t e  T: by the  

i 
(108) = k,(J + r; 

. 



6 3  

( e  1 - 1.0 
approxlmatcs the f r a c t i o n  LO' a * 

= ( e  where r = ( e  
Lo)o,j* Lo)o,j*t l  

of f u l l  time increment,  which is needed t o  cool the  tempera- 

ture of the bottom p l a t e  from (flLo)o,.js t o  1.0. 

the dimensionless e q u i  lib rim temperat w e  of s o l i d i f i c a t i o n  

of n-hexadecatie is equal t o  1.0. To f i n d  the temperature pro-  

f i l e  of the liquid a t  T:, we take the temperature of the  

bottom p l a t e  t o  be 1 . G  a t  T ~ ,  L e .  0 . ( O , T * )  = 1.0 and i n s t e a d  

of t a k i n g  time increment $0 be k,, w e  take the  f r a c t i o n  

kanew = 

new value f o r  p f o r  t h i s  step i s  p = pr .  The value for r 

and the known tzmperature p r o f i l e s  ( 0  ) are now used i n  

equation (159) t o  c a l c u l a t e  eL0( ih,, 7: )  : 

Note that 

0 

Lo 0 

< ka t o  be our  r,ew time s tep ,  and t he re fo re  the 

new 

Lo i , j* 

We now know 7: and the temperature p r o f i l e  6Lo(ih,,T,) for 

the pre - so l id i f i ca t ion  problem fo r  3 - < i I < i? and 0 5 'co 5 -rO. 

We now star t  the ca lcu la t ions  f o r  the pos t - so l id i f i ca t ion  

problem. 

= o  
at  T~ a t: . We s ta r t  off again a t  3 = 0 corresponding t o  A T  

increments,  The first time step for the post-sol idif icat ion 

problem i s  a f u l l  t ime s t s p .  Also tAe first Value used for p 

corresponds t o  a full time step, ??.lese values,  t oge the r  with 

8 ( i h  ,T*) which we have ca l cu la t cd  are used I n  the first 

Y To start, se t  7'0. This corresponds t o  T - 'I - to 3 

Lo a o 
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c a l c u l a t i o n s ,  Tne temperature of the  bottom plate i s  taken 

as the temperature of the  solid phase a t  1 - 0,  We thus 

have t h e  f i r s t  estimates of temperature p r o f i l e s  i n  the 

liquid and solid phases a t  i = 0 .  We now proceed t o  estimate 

R ( j + l )  and x as follows, 
3 + 1  

and t o  c a l c u l a t e  S 
3 + 1  

Est imat ion  of R j + l r  x f + l  and Ca lcu la t ion  of 

F i r s t  of a l l ,  we se t  S = 0 ,  H(j) a 0, x j  - 0, a t  j = 0 ,  . J 
Next  we assume, 

S'  j+i % ha 

I s  the f i r s t  approximation of Sj+l. Since  R(j+:L) is an $+I 

from S' 3+1 s i n c e  S '  j+1 = ha(Rj+l  + X j + l ) '  

3+1  
< 1.0, we can f i n d  R( j+l) and x j+l - I n t e g e r  and 0,O w < x 

(77) 

t o  use In s t a r t i n g  our  more J + l  We now have R ( j t 1 )  and x' 

' accura t e  c a l c u l a t i o n s ,  We m a y  now rename Sj,l as Sj+l(old).  

which we now have, we C M  3 + 1  Using t he  values  of R ( , j + l )  and x 

go back t o  c a l c u l a t e  new temperature ' p r o f i l e s  ernploying which- 

e v e r  of equat ion3 (94)  t o  (102)  appl ies ,  as determined by t h e  

va lues  of R ( j + l ) - R ( j ) ,  x ~ + ~ ,  and !3(J+l).  

(which we w i l l  c a l l  S new value f o r  sj+l# 
whichever of equat ions  (78)  t o  (91) that appl ies  as deter- 

We a l s o  calculate 'a 

(new)), by us ing  3+1 

and of R(J+l)-R[j) .  Ne check 

(new) a g a i n s t  S (old)  and if the  a b m l u t e  value of t h e i r  
j+l '  

mined by values  of R( j t l )  8 x 

'jtl 3 + 1  
d i f f e r e n c e  exceeds a c e r t a i n  number, e, determined by error 

analysis, we se t  S '  = %{S (old)+SJ+l(new)l. Again we use 3+1 3+1 



which are t o  be J+1 i n  equat ion  (77)  t o  f i n d  R ( J + l )  and x 

uoed t o  f i n d  new temperature p r o f i l e s  and new Sj+l.  

summary, the  s t e p s  are o u t l i n e d  below. 

Thus i n  
b 

(1) Use equat ion  (110) t o  f i n d  Si+1 f o r  t he  first 

f u l l  tine ste,). 
' e q u a l  t o  Sj+l( old). 
3+1 

( 2 )  ,et, s 

( 3 )  Use equat ion  (77)  t o  c a l c u l a t e  R ( , j + l )  and x .j+l n o t i n g  

t h a t  R is an i n t e g e r  between 0 and 1J and t h a t  0 5 x3+1 - < 1. 

3+1 
(4) Use values  which have been found fo r  R and x 

i n  tire appropr i a t e  equat ions  t o  c a l c u l a t e  new temperature 

p r o f i l e s .  

(5 )  Calcula te  S (new) u s i n g  whichever of equat ions  (78) 3+1 
t o  (91) t ha t  appl ies .  

(6 )  I f  abs{Sj+l(old) - S 

3+J 

(new)) > c, se t  S '  3+1 e q u a l  t o  
3 + 1  

%{S3+l(new) + S 

abs{Sj+l(old) - S j+ J. (maw)) - C .  

( o l d ) )  and repeat s t e p s  (2) t o  (6)  u n t i l  

Sj+l I s  now known f o r  t h i s  

time s t e p  and Sj+l = SJ+l(new), and ASj+l = S J+1 - sj. 

The first  time s tep  is now taken as f u l l y  ca l cu la t ed .  We 

r e t u r n  to mo-e time s teps .  e I s  c a l c u l a t e d  from a n a l y s i s  of 

t r u n c a t i o n  e r r o r s  of the f i n i t e  d i f f e r e n c e  equat ions.  

found from the pre- 
set As3+l'  

For t h e  second time s t e p ,  

J+1 tc 
vlous time s t e p ,  equal  t o  AS and l e t  t he  new AS 

be used f o r  our  new time s t e p  be AS4+1 = (r) k,, 

the S j + P  xj+l' R j + l  from the first time step e q u a l  t o  S 

AS 3 '  
Also s e t  

a 3  

3 '  
and R s e spec t lve ly .  Therefore,  fo r  the second time xJ a 3 '  
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1 

J+l is S j + l  “j + AS Jtl’ s tep ,  t h e  f i r s t  approxinat ion f o r  S 

s;+1 I s  now w e d  t o  repeat s t eps  ( 2 )  t o  ( 6 )  s t a t ed  previously 

u n t i l  t h e  second time s t e p  is f u l l y  calcv2ated. For inore 

time s t e p s ,  we proceed as befo re  by s e t t i n g  the Sj,la x ~ + ~ ,  

and Rj+l from our  previous time s t e p  equal  t o  S j r  XJ, and R J B  

from the r e l a t i o n  
3+1 

r e s p e c t i v e l y ,  and by o b t a i n i n g  our  new AS 

1. magnitude of new tifie increment 
= (AS,+ (magnitude of previous  time increment 3+1 

AS 

1 Then S J + 1  - SJ -t @j+l, which we then use i n  s t e p s  ( 2 )  t o  ( 6 )  

o u t l i n e d  previously.  Ye continue t h i s  s o r t  of’ c a l c u l a t i o n  

u n t i l  t h e  e n t i r e  content  of t he  c e l l  is f rozen ,  when Sj+l = L O ,  

Thus S is calculated by i t e r a t i e o n ,  Sjtl and the temperature 5+1 
p r o f i l e s  are dimensionless , b u t  are easi ly  converted i n t o  

diriiensloned values , 
m 

S t a b i l i t y  Cri ter ia  f o r  Governing. F i n i t e  Difference Equations 

By d e f i n i t i o n  R ( j + l )  i s  a non-negative i n t e g e r  between 

0 and 1J where 14 is t h e  t o t a l  number of nodes i n  the space 

d i r e c t i o n  a long  z, Thus R ( j + l )  is an i n t e g e r  such t h a t  

i o  by d e f i n i t i o n  a f r a c t i o n  between 
3+1 

0 < R - I?, Also  x 

0 and 1, 
0 

It is a l s o  non-negative, Therefore ,  x Jtl must l i e  

must sa t lsfy 
3+1 

in the  regiofi 0 x 1, R ( j + l )  and x - J+1 - 
these condi t ions  l e s t  there arise i n s t a b i l i t y  i n  the  s o l u t i o n  

of the’ d i f f e r e n c e  equat ions.  R ( j )  and x must a l s o  sat isfy 3 
the  same condi t ions  as R ( , j + 1 )  and x $ + ~ .  If the c o e f f i c i e n t  

were t o  o s c i l l a t e  f r e e l y  W-tl o r  6 i , J  of any temperature 8 
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between p o s i t i v e  and negat ive  values ,  the s o l u t i o n s  t o  t h e  

d i f f e r e n c e  equat ions  would become unstable .  Thus,  f o r  s t a b i l -  

o r  e r e t a i n  
5 8 3  i , J + l  i t y ,  we I n s i s t  tha t  t h e  c o e f f i c i e n t s  of 8 

the  sane s i g n  throughout the s o l u t i o n .  Thus i f  t h e  coef- 

i s  p o s i t i v e  f o r  any f &  i t  must stay g r e a t e r  i r 3  f i c i en t  of 8 

than o r  equal  t o  ze ro  f o r  any o t h e r  i,J. I f  i t  is negat ive 

f o r  any i r 3 ,  i t  must  s t a y  less  than  o r  e q u a l  t o  zero f o r  any 

- o t h e r  i , j .  These condi t ions  must be p a r t i c u l a r l y  so s i n c e  

the temperatures T and Te.’which g ive  8 by the equat ion 8 - T/Te 

are def ined  on the abso lu te  temperature scale and must there- 

fore each be non-negative f o r  any”,,j. Thus 8 must  be 

non-negative. With these p o i n t s  i n  mind, we check each of 
1 8 3  

the equat ions  t h a t  g ive  the  temperature p r o f i l e s  8 and 

Impose on i t  the cond i t ion  tha t  none of the c o e f f i c i e n t s  may 

change sign, On checking equzt ions  (48) through (91) w e  f i n d  

tha t  f o r  s tab le  s o l u t i o n s  the  fol lowing condi t ions  must be 

s a t i s  fled: 

o < x  < 1  - J+1 - 
R must be an i n t e g e r  such that 0 I, < R ( j )  - < N 

and 

, 
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Eqsat ion (116) merely s ta tes  tha t  i f  a p o s i t i o n  node, 1, 

has s o l i d i f i e d  a t  the jth time s t e p ,  it should stay solidified 

dur ing  t h e  ( j+ l ) s t  time step s i n c e  n e t  heat i s  be ing  removed 

all t he  time from t h e  system, 

for p o s i t i v e  time s t e p .  

for stable  s o l u t i o n s .  

r = 1. Therefore ,  equa t ion  (117) is  sat isf ied if 

2 

From equat ion  (lag), 1 - 2 r p  - > 0 (117) 

S ince  0 - < r - < 1, t h e  maximum value is 

p = k& and p i s  p o s i t i v e  

1 - 2 p > o  0 (118) 

Therefore, t h e  maximum value of p above which the s o l u t i o n s  

become uns tab le  and below which the  s o l u t i o n s  are s tab le  I s  

given by equa t ing  the  left hand side of e i ther  equation (114) 

or  e q u a t i n g  (118) t o  zero, Which of t h e  two values of p t o  

accept  as t he  accep tab le  maximum depends on t h e  value of A .  

X is  non-negative s i n c e  X * a,/aL. Thus, 

and 

Thus, if X is less than  2,  then pmax,a. is greater than  5 and 

Pmax 2 
( 1 1 4 )  and (118). 

accep tab le  p since i t  sat isf ies  both equat ions  ( 1 1 4 )  and 

(118) i n  t h i s  case. Having selected pmaX, we now know t h a t  

any value  of p t h a t '  satisfies the i n e q u a l i t y  equat ion  

is the  acceptab le  p,,, s i n c e  i t  satisfies both equat ion 

If X is greater than 2 ,  then pmaXll i s  the  

max 

0 

been chosen and fixed, the  kats tha t  will give o t a b l e  solu- 

t i o n s  are given by the i n e q u a l i t y  equation, 

P h P,,, will give stable s o l u t i o n s .  Thus if ha has 



O < k  < k  where k I s  given by 
a - amax amax 

2 k - ha2/A or k - %ha depending on whether i s  
amax 

greater than 2 or lezs  than 2 .  



EXYEHIifiZiJTAL GQUIPIUiJT AiJD PROCEDURE 

A s h o r t  d e s c r i p t i o n  of t h e  main components of the experi-  

mental equipment and an account of the  experimental  procedure 

are given i n  t h i s  s e c t i o n .  

Equipment 

Tlie p r i n c i p a l  elenent.  of the equipment was the tes t  ce l l .  

The a u x i l i a r y  elements were thermocouple assembly, one 4- 

channel-continuous-temperature r eco rde r ,  a power-driven pump 

and a refrigerator. Each element 13 given a concise  descr ip-  

tion below. , 

T-: The t e s t  c e l l  (Fig. 9) had a cons tan t  square 

cross-sec t ion  of  exteraal dimensions 5 i n ,  and o v e r a l l  he ight  

of 3-15/32 in .  

was sealed with  soft solder t o  one face of an 1/8-in.-thick 

It was composed of a cool ing  chamber whicfi 

copper  p l a t e  ( t h e  bottom p l a t e  o r  co ld  plate) ;  a plexi-glass 

frame 1-15/32 in. high which was sealed with  epoxy to .the 

bottom p l a t e  t o  form t h e  chamber in which the t es t  material, 

n-hexadecane, would be cofifained; and another  1/8-in,-thick 

copper  p l a t e  ( t h e  top  p l a t e )  whicl? was I n  t u r n  a t t ached  t o  

the other end of the  p lcx i -g lass  frame by means of b o l t s  and 
0 

screws. Figure (10) s5ows the exploded view of t he  tes t  ce l l .  

The cooling chamber (F ig ,  11) was cons t ruc ted  from 

%-in.-thlck copper plates. The void  of the coolfng chanber . -, 

had a square base of &in.  sides and a height  of 1% in, 



Figure 9 .  Test cell. 
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Figure 10. Exploded view of t e s t  cell. 
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Figure 11, Cooling chamber. 
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E x t e r n a l l y ,  t n e  cool ing  chamber had a square base of 5-in. 

s i d e s  arid a h e i g h t  of 1-3/4 i n ,  On each of its v e r t i c a l  

sides and very  c lose  t o  the bottom plate,  tkc cool ing  chamber 

c a r r i e d  two equa l ly  spaced 3/8-in,-externa1-diameter copper) 

tubes which se rved  as o u t l e t s  f o r  t h e  coolant .  Each t u b e  

was 1 i n .  long. Thus, there were eight o f  these side tubes  

i n  all. Also ,  a t  the c e n t e r  of i t s  bass, t !>e cool ing chamber 

. had one 3/8-in,-external-diameter copper tube wliich. s e rved  

as i n l e t  f o r  t h e  coo lan t . '  This last t u b e  was also 1 in. long, 

Thus,  the chamoer made i t  p o s s i b l e  f o r  a coolant for the 

bottom p la t e  t o  flow in through t h e  base t u b e  and flow ou t  

through the  eight side tubes.  The coolan t  used was l i q u i d  

methanol. 

Ti,* bottom plate  (Fig. 1 2 )  was simply a 5-inZ-aquare 
.4 ** ')r 

copper p la te  of 1/8-in. th ickness .  It xds so lde red  t o  t h e  cool- 

i n g  chamber OF, one f & ~ c  and glued t o  t h e  plexi-glass frame on 

the  o ther .  On the c e n t e r  of t h e  f a c e  which was ooldered t o  

t he  p l exbg las s  frame, i t  carried a copper-constantan thermo- 

couple. !l?he thermocouple was admitted throug!i a ho le  wiiick, 

had been d r i l l e d  on a s ide of the plexi-glass frame and which 

was thereafter sealed wi th  epoxy resin. 

The p lex i -g lass  framc (Fig. 1 2 )  was machined out of a 

t h i c k  p l ex i -g l a s s  slab. The frame was +%n, thick, 

.. 1=15/324n. high arrd had a T-in.-square outside cross-section. 

It was glued at one end t o  the s ide of the bottom plate 

tha t  c a r r i e d  a thermocouple, wi th  the r e s u l t i n g  formation of 



Figure 12. Plexi-glass chamber for test material. 
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a chamber of 4=in.=square cross-sectloi;  and 1-15/32-in. 

h e i g h t .  T i l s  chamber would conta in  t h e  tes t  material &id 

its h e l g n t  of 1-15/32 i n .  would be t h e  h e i g h t  r e f e r r e d  t o  as 

ii i n  the present  s t u d y .  A t  t h e  o t h e r  end, t h c  plcxi-glass 

frame had e ight  screxed-in b o l t s  wi th  one a t  each co rne r  and 

one at the n l d d l e  of each edge. The top copper p la te  would 

be a t t acned  t o  t h e  Les t  c e l l  by means of these b o l t s .  The 

frame c a r r i e d  two copper-constantan thermocouples on i t s  

s i d e  a t  d i s t a n c e s  of 14/32 i n .  ( o r  1 4 h / 4 7 )  and 30/32 i r , .  

( o r  30h/47) from the  bottom plate. 

The top p l a t e  (Fig. 13) was ano the r  5=in.-square copper 

plate of 118411. th ickness .  A t  the corners  and the c e n t e r s  

of each of i t s  four edges, holes were d r i l l e d  t o  r e c e i v e  the 

bolts from the  p l ex i -g l a s s  frame, Screws would then be used 

t o  b o l t  the p l a t e  down on the p lex i -g l a s s  frame. There were 

two main reasons f o r  using b o l t s  and screws h'ere i n s t e a d  of 

so lder -  seal. 

copper plate  on t o  the plexi-glass frame war; very d i f f i c u l t  

s i n c e  t h e  p l ex i -g l a s s  tended t o  melt be fo re  the  copper p la te  

could be h o t  enough t o  g ive  a good seal. Although It was 

r e l a t i v e l y  easy to attach a copper frame by s o l d e r i n g  

on t o  a h o t  copper p l a t e ,  i t  was n o t  as easy t o  a t t a c h  a 

copper p l a t e  by s o l d e r i n g  i t  on to a h o t  p lex i -g lass  frame. 

& m d  .*c 

&e*firs*t reason was. - that  t r y i n g  t o  sea l  a 

The second reason f o r  u s ing  screws and b o l t s  was t o  f a c i l i t a t e  

the  f i l l i n g  and emptying of the  t e e t  ce l l .  The top  plate 

also c a r r i e d ,  a t  t h e  c e n t e r  of i ts  f a c e ,  a 1-3/4-1n. long 

copper tube of 1/16=in. i n t e r n a l .  diameter and 1/8-in. e x t e r n a l  



Figure 13 ,  Diagram of top copper plate.  
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diameter,  T h i s  ac ted  as an expansior, c h m b c r  i n  case there 

was a volume Increase  of the t e a t  material d u r i n g  phase 

change A copper-constantan thermocouple was passed through 

a hole  d r i l l e d  i n t o  the t ap  plate  and its Junc t ion  was 

affixed t o  the i n s i d e  face of the  p l a t e  by aoldcr lng .  

3hcrmocouple assemb - Q: As was shown In the d e s c r i p t i o n  

of the  t e s t  c e l l ,  t he  cell c a r r i e d  f o u r  copper-constantan 

thermocouples loca t ed  as fol lows:  one each at the i n s i d e  

faces of the  bottom, and top p l a t e s ,  a t h i r d  at  14/32 i n ,  o r  

14h/47 froin tne bottom p l a t e  8 through the plexi-glass walls 

and t h e  f o u r t h  at 30/32 in. or.30h/47 from tho bottom p la te ,  

also through t h e  plexi-glass walls, The o t h e r  ends of t h e  

thermocouples were appropr i a t e ly  J’olncd br s o l d e r i n g  and the  

Junct ions  were immersed in a mixture o f  i ce  and water i n  a 

Dewar flask to form cold  junc t ions  a t  O,O°C (Fig, 1 4 ) .  

free ends were then connected t o  plug3 t h a t  led into a four- 

The 

channel recorder .  Each of the  f o u r  channels was connected tc 

a single thermocouple 

Femperature recorder: The r eco rde r  was a 4-chanriel 

Sanborn continuous r eco rde r ,  Model 150-1500. Thus, each 

channel could r eco rd  the  temperature profile sensed by one 
I 

thermocouple continuously on a c h a r t  as a func t ion  of time. 

Thus the  f o u r  channels allowed the  use of f o u r  thermocouples 

only. The Sanborn Low L e v e l  P reampl i f i e r ,  Model 150-1500 8 

which formed each channel of the r eco rde r ,  was a chopper type 

of amplifier f o r  measuring slowly varying d i r e c t  vo l t ages  o r  

measwlng slowly varying c u r r e n t s  by adding an external shunt 
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Figure 14. Thermocouple arrangement: 

(a) Assemblage showing cold junc t ion  and plug 
for  a single thermocouple 

(b) The panel of one channel of  the recorder 
showing a socket for receiving thermo- 
couple plug. 



constantan 

cork 

Ice & vater 

copper 

63 
33cket for  

). 

I coppor Lead - 

A t t  @ e m  at  or 

ON& 
Powc R 

t h e m -  

coup3e0 +-@ 



r e s i s t o r .  The s i g n a l s  couid  be read i n  c i r c u i t s  removed 

from the ground by as tnucii as 300 v o l t s  liC, It had a sensi-  

t l v l t y  of 10G m i c x v o l t s  pe r  cent imeter  t o  0 .1  v o l t  pe r  

c e n t l n c t e r  of chart i n  ten steps, For i n s t a n c e ,  when c a l l -  

brated a t  500 mic r svo l t s  per  cent imeter ,  t h e  accuracy i n  

reading  tire chzrt  was 20.025 m i l l l v o ~ t s ,  For a copper- 

constantan thermocouple, t h i s  corresponded . t o  an accuracy 

of f0.7°C. The speed of the  c h a r t  was I n  the  range of  0.025 

millimeters p e r  second t o  10 millimeters p e r  second arranged 

as follows ( a l l  u n i t s  be ing  millimeters p e r  second) i 

0,025, 0,058 0,1, 0e25, 0.5, 1, 2 e 5 ,  5 s  10, 

Thus, t ine  i n t e r v a l s  could be obta lned  from the speed of the 

c h a r t i n g  paper. . 
Pwlip: The pump used t o  c i r c u l a t e  t h e  coolan t  (methanol) 

from the r e f r i g e r a t o r  t o  t h e  t es t  cell was a Cnernical Rubber 

Company (32) '*i#c-Seal" c e n t r i f u g a l  pum2, Model AijIPOO5iJ#. It 

operated on 115-volts , 60 c y c l e s  , a l t e r n a t i n g  c u r r e n t  only 

It could a t t a i n  3000 r evo lu t ions  p e r  minute and pump from 

420 gLllons per  hour st a head o f  1 f't t o  250 g a l l o n s  p e r  

hour a t  a head of 9 f t  under normal atmospheric condi t ions ,  
, 

Ref r ige ra to r :  The r e f r i g e r a t o r  for the  coc lan t  was a 

i3ar R a y  of Brooklyn, ilew York, Model 557T r e f r i g e r a t o r  t h a t  

operated on a 60-cycle, l l 5 - v o l t  a l t e r n a t i n g  c u r r e n t  , It 

had 3 r e g u l a t o r  that could be used t o  ad jus t  the s teady  s ta te  

temperature t o  which the r e f r i g e r a n t  is cooled, A schematic 

pictclrrc of the assembled equipment is shown i n  Figure (15). 



Figure 15. Block diagram of assembly of main experimental 
equipment. 





Experlmental  Procedure 

The top p l a t e  was rernoveC from the c e l l ,  the  t es t  c e l l  

was completely f i l l e d  w i t h  t h e  test  material, n-hexadecane 

and the top p la te  was rep laced  and b o l t e d  down by screws t o  

seal t h e  ce l l .  The c e l l  was supported on an open cardboard 

box, The I n l e t  and o u t l e t  tubes of the  cool in& chamber were 

connected by tygon tubings t o  t h e  pum;, a n d 3 0  a methanol 

r e s e r v o i r  f i l l e d  wi th  methanol. The methanol r e s e r v o i r  was 

also connected t o  the r e f r i g e r a t o r  by 6 tygon tubing. The 

thermocouples were plugged in and the  appropr i a t e  s c a l e s  were 

se t  on the cnart for continuously r eco rd ing  temperatures in 

t h e  form of voltages .  I n i t i a l l y ,  a two-way tap  between the 

t e s t  cell and the r e f r i g e r a t o r  was used t o  s h u t  off the  flow 

of methanol from the r e f r i g e r a t o r  t o  t he  t e s t  c e l l  and the 

pump was tu rned  on t o  c i r c u l a t e  methanol o n l y - w i t h i n  tne rest 

of the  equipment for  a few minutes. I n  t h i s  w a y  the tempera- 

t u r e  of the methanol i n  the  sys tem was made approximately 

uniform before being l e d  i n t o  the cooling chmber of tne t es t  

cell. It also becaue possible t o  s tar t  r eco rd ing  temperatures 

at  the same time that the  coolant  (methanol) started flowing 

i n t o  t h e  coo l ing  chanber of the tes t  cell. Thus when i t  was 

* 

certain tha t  the  system was ready, the r e c o r d e r  chart  was se t  

i n  mot! '8  a t he  two-way t a p  was used t o  allow enough flow rate 

of the coolant  t o  ensure  t u r b u l e n t  flow I n t o  the cool ing  

chamber of t he  t e s t  cell, and the time was noted as t = O  a t  

the start of the experiment. The room temperature was also 



read w i t h  a iacrcury thermometer a t  t h e  b e g i n n i n g  of t ! ie 

experiment and a t  r e g u l a r  I n t e r v a l s  dur ing  t h e  experiment 

'ulhen a l l  of  t he  n-hexadecanc o r  enough of It had. 

s o 3 i d i f i e d  (sometimes i t  took more than 90 minutes t o  

s o l i d i f j  about three quarters of t h e  amount of n-hexadccane), 

the experiment was terminated,  The thermocouple readings  

were tnen t r a n s l a t e d  from the  vo l t age  record ings  of the 

c h a r t  t o  degrees Centigrade by us ing  a table of emf% arid 

temperatures f o r  a copper-cons t a n t a n  thermocouple 

Polynomial f i t s  f o r  f , ( t )  and f , ( t ) :  As was s t a t ed  i n  

t h e  t h e o r e t i c a l  analysis , the experimentally-determined 

temperature profiles of the bottom and the top  plates  were 

t o  be used t o  ob ta in  polynomial f i ts ,  f l ( t )  and f 2 ( t ) ,  

r e s p e c t i v e l y ,  t ha t  would ac t  as time-dependent boundarj  con- 

d i t i c n s  f o r  the  t h e o r e t i c a l  problem .of  t h i s  s'tudy. fl( t )  

and f 2 ( t )  were obtained f o r  each experiment by uslng exponen- 

tial f i t s  of  the  type 

T ( t )  = A + B e x p ( - c ( t ) t )  where c ( t )  was a polynomial 

of degree 5 o r  less found by t h e  least-squares f i t ,  "A" 

corresponded t o  t he  f i n a l  steady s ta te  temperature of  the  

co ld  bottom p l a t e  and the sum of A and i3 equalled the  i n i t i a l  

temperature a t  t=O, i.e,, the  room temperature T, which was 

f a i r l y  cons taiit throughout the  p a r t i c u l a r  experimental  run. 

Thus, if t h e  f i n a l  s teady s t a t e  temperature of the  co ld  

then cpf '  bottom p la te  w i d  T 

cpf' and A+i3 T, or l3 'm T, - T A = Tcpf,  



Thus,  f o r  a p a r t i c u l a r  run,  the f i t  t o  t h e  temperature of the 

bottom p la te  was 

(120) 

and t h e  f i t  t o  t h e  temperature of  t h e  top  p l a t e  was 

(121) 

The use of an exponent ia l  f i t  of t h i s  form was promptec! by 

the fo l lowing  reasons.  The f i rs t  reason was that a polynomial 

f i t  of degree 5 o r  less s t i l l  gave a s t anda rd  d e v i a t i o r  

between f i t t e d  temperature and experimental  temperature t h a t  

was too large compared t o  t h e  e r r o r  i n  read1r.g the actual 

temperatures experimentally.  A polynomial of degree more 

than 5 was thought t o  be unwieldy. Also, the  round-off 

e r r o r s  from the computing program became s i g n i f i c a n t  f o r  

deg. ees  greater than 5. A d i f f e r e n t  f i t  had t o  be found. 

The second reason was t h a t  the experimental ly  measured tempera- 

ture of the bottom p l a t e  approached t h e  p r o f i l e  of a decaying 

expcnent ia l .  It s tar ted o f f  from room temperature and f e l l  t o  

a c o n s t a t  s t eady  s ta te  temperature that  depended only on the 

s e t t i n g  of  the r e f r i g e r a t o r  cu r ren t .  S ince  no p a r t  of  the  

c e l l  could be co lde r  than the coolant  being c i r c u l a t e d  by the  

r e f r i g e r a t o r  and s i n c e  a t  the  beginning of the experiment the 

cell and i t s  e n t i r e  con ten t s  were a t  a cons t an t  room tempera- 

t u r e ,  i t  was decided t h a t  a t  t n e  f i n a l  s teady  s ta te  of tile 

entire cell, t he  temperature would be equa l  t o  the  s teady  



s t a t e  teyperature of t h e  bottom p la t e ,  which, i n  turn, 

e q u a l l e d  the  s t e a d y  s t a t e  temperature of the coolant  as 

regulated by the  r e f r i g e r a t o r .  Thus , the temperature pro- 

f i l es  of the bottom and the  top p la tes  *.aould only d i f f e r  

by t h e  values  of the exponents,  p a r t i c u l z r l y  c1 and c2. 

A computer program wa3 w r i t t e n  that would read in Ta, 

T ( t )  and t ,  and a l s o  c a l c u l a t e  c ( t )  from the equat ion %pf * - 
C'(t) ~ l n { ( T ( t ) - T , , , ) / ( T a o T c p f ) ~  1 f o r  t > 0 

where c ( t )  is a polynoxriL&'. f i t  of c t ( t )  and c t ( t )  is calcu- 

lated from experimental  values  by Equation 122, If T ( t )  

w a s  the  experimental ly  determined temperature f o r  the bottom 

plate ,  then c t ( t )  was c;(t); if i t  was f o r  the  top plate,  

then c t ( t )  was c;(t). A t  t o o ,  T(t)=T,  and {c ' ( t ) ) t=O.  When 

T ( t )  aa TCpf, then e 

equa t ion  (122) only f o r  t > 0 and for t such .that T( t )<Tcpf .  

The computer program then would o b t a i n  a pclynomial f i t  c ( t )  

30. Thus c t ( t )  was c a l c u l a t e d  by " { C ' ( t ) ) t  

for  c t ( t )  of degree 5 o r  less using the  least-squared method. 

The values f o r  c ( t )  were then p u t  i n t o  equation (120) o r  

equa t ion  ( 1 2 1 )  t o  o b t a i n  T ( t )  ( f i t )  - f ( t ) .  The sum o f  t he  . 

(experiment ) 
squa res  of the dlfferences between T ( t ) ( f i t )  and T ( t )  

was than c a l c u l a t e d  f o r  each degree of' c ( t ) ,  

c l ( t )  o r  c 2 ( t ) ,  whlch gave a standard d e v i a t i o n  of T ( t )  

from T! t, (experimental)  

That degree of 

( f i t )  
such that  the  standard d e v i a t i o n  was 

m i n i m u m  and a l s o  less t han  or equal to t he  e r r o r  in reading 

T ( t )  exper imenta l ly ,  was taken as the best one t o  uoe i n  

equa t ion  (120) o r  equat ion  (121)  , The computer program has 
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been inc luded  I n  the appendix, Computer p r o g r a m  f o r  the 

pre- and t h e  pos t-solidification problems have also been 

inc luded  i n  t h e  appendix. 

E s t i m a t i o n  of c :  T'ne convergence c r i t e r i a  used I n  cal- 

was t ha t  i f  I S  ( o l d )  - Sj+l(new)lc c ,  then 
3 + 1  J + l  cula t lng  S 

was taken t o  have been c a l c u l a t e d  within the  l i m i t s  Sj+l 
al lowable by the t r u n c a t i o n  e r r o r 3  o f  the f i n i t e  d i f f e r e n c e  

= S (new) f o r  the Then Sj+l 3+1 equat ions  which were used. 

( j t l )$t  time step. 8 was ' c a l c u l a t e d  by cons ider ing  the 

largest  abso lu te  value of the t r u n c a t i o n  e r r o r s  i n  each of 

equat ions  (78) t o  (91). The largest  t r u n c a t i o n  e r r o r s  mre  

O(k,h,M) + O(kah:J) 

O(kaha 2 €4)  t b(kahaJ) 

(1230) 

The orders  of magnitude were replaced by the abso lu te  values  

of each term i n  equat ion  (123),  

between 0 and 1, the largest absol:nte value of the t r u n c a t i o n  

e r r o r  i n  c a l c u l a t i n g  S 

(1230) o r  equat ion  ( 1 2 3 ~ )  as 

Since  I;, and ha were f r a c t i o n s  

was obta ined  rram either equat ion  
3 + 1  

(124a) 

or * abs(k,ha2#) + abs(kah,J) (124b) 

depending on the a c t u a l  magnitudes of M, J, ka, and ha. 

- abs(kaha14> t abs(kaha 2 J )  

Ifowever, a value f o r  c which was larger  than tha t  given 

by e i the r  equat ion  (124a) o r  equat ion (1240) had t o  be used S O  
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as t o  account for rouai-off  errors from the computer program 

for c a l c u l a t i n g  SJ+l .  

found by f i x i n g  N, J ,  k, and ha, and asourrdng smaller and 

smaller values  of & until such a value t h a t  e i t h e r  d i d  n o t  

a f f e c t  the accuracy of  the c a l c u l a t e d  S 

caused the compiter t o  go I n t o  an i n d e f i n i t e  loop. In tne  

event  t h a t  the  coniputer went i n t o  a loop, the next  h igher  

The a c t u a l  value of E t o  be u3ed was 

s i g n i f i c a n t l y  o r  
3 + 1  

v a l u e  of was used. The value,  8 = 0.0004, which wa3 used 

in the computer program f o r  the present s t u d y  was obtained i n  

this manner. This value corresponded t o  1.88% of the magnitude 

of the  space increment ha and t o  0,04% of the t o t a l  height of 

n-hexadecane i n  t h e  test c e l l .  Thus, when the  e n t i r e  conten t  

of the test  c e l l  was frozen,, the c a l c l h t e d  height of solid 

varied from tha t  p red ic t ed  by an e x a c t  a o l u t i o n  of equat ions  

(2a) and (2b) by aboct  20,045 of the a c t u a l  height of solid 

In the t a s t  cel l .  

. 



The experimental rssults g iven  i n  this s e c t i o n  were 

ob ta ined  f o r  t h e  t e s t  c e l l  t h a t  was d e s c r i b e d  p r e v i o u s l y ,  

The t e s t  material was p r a c t i c a l  n-hexadccane of 

molecular  weight 226.45 and i t  wa3 d i s t r i b u t e d  by the  Eastman 

Kodak Company f o r  chemical  purposes .  It had small i m p u r i t i e s  

t h a t  d i d  n o t  change i t s  p r o p e r t i e s  apprec i ab ly .  It completely 

f i l l e d  a void of  the  t e s t  * c e l l  ob b i n ~ s q u a r e  c r o s s - s e c t i o n  

and 1-15/32-in. height. 

obtair: the t h e o r e t i c a l  r e s u l t 5  were ob ta ined  from d o r t h r o g t s  

f i n a l  r e p o r t  (25). 

The v a l u e s  of the  parameters used t o  

Data from i J o r t h r o p t s  r e p o r t  were: 

Dens i t y 
3 Solid n-hexadecane y1.0772 - 8.41 x 10a4T gm/cln 

f o r  T 0 289.goK 
Liquid  n-hexadecane pL=O. 9726-6.813 X 10 -4  T g m h m  3 

f o r  289.goX < T c 400,O'K 
V 0 

S p e c i f i c  Heat 

Liquid  n-hexadecane cPL - 0.1626 + 1.164 x IOo3, cal/(gmaoK) 

for 289.g0X < T < 480.OoK 
V - 

Conduct iv i ty  

S o l ~ d  11-hexadecane K,=2.390 x lom3 - 3.047 x watt/(crn-*X) 

f o r  250.0°K .L < T 1. 289.g0K 

95 



f o r  289.9OK 0 T ..c 42fj.Oo1< 

S o 1J. d i  f i c a t  i on temp e rat ure 

T = 289.g0K = 1 6 . 7 ' ~  e 
L a t e n t  heat  of s o l i d i f i c a t i o n  

P 102b0 Ptu/ lb  56.67 Gal/@ *f 

Since  the t h e o r e t i c a l  model of t h e  p re sen t  s t u d y  assumed con- 

stant b u t  d i f f e ren t  p r o p e r t i e s  f o r  the s o l i d  and t he  l i q u i d  

phases cons tan t  va lues  were c a l c u l a t e d  from Slorthrop's r e p o r t  

using average temperatures f o r  those p r o p e r t i e s  that  were 

temperature dependect . Since  the . s o l i d i f i c a t i o n  temperature 

was 289.9OX and the  lowest temperature fourid i n  the t e s t  c e l l  

d u r i n g  a run was aFproximately 262.2*K, the average of these 

temperatures, T av 

s 

%(289.9+262b2)oK * 276.L°K, was sub- 

s t i t u t e d  I n t o  the equat ions  for  the  temperature dependent 

p r o p e r t i e s  of t h e  solid phase t o  o b t a i n  average values  t h a t  

were used as cons tan t  p r o p e r t i e s  f o r  t he  solid phase. Simi- 

larly, s i n c e  t h e  h i g h e s t  temperature encountered in the 

experiment was approximately 302 OOK, t h e  average temperature , 
TLav = ~(302+28909)0K 295.g0Xr was used t o  c a l c u l a t e  prop- 

erties f o r  tne l i q u i d  phn3e. Thus the values  of t h e  proper- 

ties used fa* the  p r e s e n t  study were: 

Density 
3 

0.771 &cm3 

S o l i d  n-hexadecarrc p, - 0.845 g m h m  

Liquid n-hexadecana pL 
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S p e c i f i c  heat 

c - 0 . 5  cal/(gm-'L) 

CpL = 0.507 cal/(gm-%) 
PS 

S o l i d  n-he xado cane 

Liquid n-hexadecanc 

Conduct I v i  t y  

S o l i d  n-hexadecan3 K = 1 . 5 4 9  x lOm3watt/( cn-'ii) 8 

= 2.22  x 10-2cal/(cm-rnin-oi<) 

Liquid n-hexadecane KL - 1 , 4 8 8  x 10'3watt/(cm-oK) - 2 , 1 3  x lO-*cal/(cr . ' rl-OK) 

Tne rma 1 d l  f f us i v i  t y  
--2 2 

S o l i d  ki-hexadecane as=Ks/(p c ) - 5.254 x 10 cm /min s ps 
Liquid  n-hexadecane aLIKL/(pLcpL) = 5 . 4 5 7  x 10 -2 cm 2 /min 

S o l i d i f i c a t i o n  temperature 

T, * 28g,g0X '* 

Latent h e a t  of s o l i d i f i c a t i o n  

Hf 56 .67  callgm . 

Dimensionless  variables 

A a a8/aL 0.9627 

J ( P L / P ~ ) ( c ~ L  T e /H f 1 - 2.367 

= ( a  / h 2 ) t  

= A 2  = 1/47 ha 

= 3.921 x 10 -3 t where t is i n  min.  L 

Other values used were 

h = 1-15/32 i n .  9 47/32 i n .  = 3 .73  cm 

. -. Ay = (Irz)h = (h,)h = 1/32 i n .  = 7.9 x loo2 ctn 

t = 255 T~ minutes 

t = 15, 300 f o  seconds 



T . wine; t he  argument in the t h e o r e t i c a l  analysis of the 

conbi t ions for s t a b i u t y ,  equation (119b) was used t o  find 

since X was less than 2. Thus %ax 

* 3.5 s e c  J 0.058 min, max At 

Thus, for the  chosen ha = 1/47, any A t  less than 3.5 s e c  

satisfied the s t a b A l i t y  c r i t e r i a ,  A t  

seconds were used, Tney corresponded 

l h 5  300 end 2/15,300, r e spec t ive ly .  

a t  Table 1 would show) t h a t  there was 

ence between the t enpe ra tu re  p r o f i l e s  

second time s t e p  and those calculated 

o f  1.0 second and 2.0 

to values of ka of 

It was found (as a glance 

no s 9. f 1 cant  d i  f f er- 

ca l cu la t ed  usiilg a 1- 

us ing  a 2-second time 

step. The two-second time s t e p  reduced, the computer time mqul red  

f o r  the ca l cu la t ions  without  a f f e c t i n g  the accuracy of the 

results. Tables (1) t o  (7)  and Figures (16) t o  (33 )  show the 

experimental  r e su l t s  and the r e s u l t s  of the t h e o r e t i c a l  

analysis corresponding t o  each experimental  run. 

The only manner i n  which the  experimental  runs were 

d i f f e r e n t  from one another  wa3 12 the values of One or both 

of the following two phys ica l  condi t ions : ambient tenpera- 

ture, T2, and the  steady s ta te  temperature,  T P f ,  t o  which 

the  bcttom p l a t e  was cooltd. The ea-lier terminat ion of 

some experimental  run3 compared t o  o the r  runs was mostly 

arb13rary and i t  had nothing t o  do with opera t iona l  requirements 
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o r  experimental l i m i t a t i o n s .  For i n s t a n c e ,  the first three 

experimental  runs (Runs 1, 2 ,  and 3) were tcrnulnated soon 

a f t e r  about one-third of the conten t  of  the t e s t  c e l l  had 

so l id i f i ed ,  wh i l e  the  remaining three experimental  runs 

(Runs 4, 5, and 6 )  were terminated a f te r  about two-thirds of 

t h e  conten t  of the c e l l  had s o l i d i f i e d  and before  the e n t i r e  

conten t  of t h s  c e l l  had s o l i d i f i e d .  The maximum number of 

p o i n t s  tha t  could be recorded on a graph of experimentally- 

observed height of s o l i d  formed versus  time was 4 s i n c e  only 

f o u r  thermocotiples were used. 

I n  gene ra l ,  t he  experimental  r e s u l t s  of the tes ts  per- 

formed show good agreement with the  theoretical  r e s u l t s  

obtained from the numerioal a n a l y s i s .  There was much bet ter  

agreement ZY experimental  r e s u l t s  w i tn  theoret ical  r e s u l t s  

for t h e  p r e - s o l i d i f i c a t i o n  problem than f o r  t h e  post-  

s o l i d i f i c a t i o n  problem, As time elapsed, the experimental  

r e s u l t s  i n d i c a t e d  a much s lower dGcrease i n  temperature than 

that pred ic t ed  by the  theoret ical  r e s u l t s .  The height of 

s o l i d  formed, as i n d i c a t e d  by t h e  experiment,  agreed well 

i n i t i a l l y  w i t h  t h a t  p r e d i c t e d  by the t h e o y e t i c a l  calcula-  

t i o n s ,  b u t  i t  became smaller than that p r e d i c t e d  t h e o r e t i c a l l y  

as time e l apsed  and as the s o l i d i f i c a t i o n  f r o n t  approached 

t h e  t o p  plate  of  t he  c e l l ,  Thus, the t h e o r e t i c a l  alalysis 

p r e d i c t e d ,  i n  the  early par t s  of the experiments,  about t h e  

same rate of s o l i d i f i c a t i o n  as w2.3 observea experimental ly  , 
. -. 

but i t  p r e d i c t e d  a fcster  ra te  of  so l id? , f i ca t ion  t h a n  t n a t  
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observed experimentally a s  t h e  f reez ing  f r o n t  approached t h e  

top of t h e  t e s t  c e l l .  

The polynomial fits of‘ the experimentally-observed 

temperature p r o f i l e s  of the bottom plate  o r  t h e  top p la te  

agreed c lose  l y  w i t-h the e x p e  rlrnen 1; a1 l y  - de t ermine d t empe ra t  ure 

przZi2  es themselves. The maximum s tandard  devia t ion  which 

w a s  found between any experimentally-observed temperature 

p r o f i l e  and Its polynomial f i t  was much less than t h e  f1,u’K 
- 

which was the estimated e r r o r  i n  observing the temperature 

profile experimentally. S i m i l a r l y  8 the maximum observe6 

d i f f e rence  between t *  as found experimentally and t* as foun 

by numerical ana lys i s  was less than 22.0 seconds. It should 

be recalled that t* was defined as the time i n t e r v a l  between 

the start  of coolir,g of the bottom plate  and the i n i t i a t i o n  

of s o l i d i f i c a t i o n  of n-hexadecme on the bcttom plate. 

each of the graphs of the he ight  of solid formed versus tibe, 

In 

t* r ep resen t s  the I n t e r v a l  between +,SO ana the poin t  where 

the curve i n t e r s e c t s  the  time coordinate. 

One reason why the  experimental and t h e o r e t i c a l  r e s u l t s  

agreed during the early stages of s o l i d i f i c a t i o n ,  b u t  

differed dur ing  the l a t t e r  stages was perhaps that the nea t  

ga ined  from the surroundlngs during the early per iod  of 

s o l i d i f i c a t i o n ,  when t h e  f r eez ing  fr0r.t was still near  the  

cold plate ,  was not  y e t  s u f f i c i e n t  t o  cause any appreciable  

change in the rate at which heat was being withdrawn from the  
S 
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cold p la t e  by the refr lgcrated coolant .  B u t  as time passed 

and a3 t h e  amount of t h e  l i q u i d  phase which was l e f t  becarfie 

s l T  . . l e r  t h e  heat gained from the  surroundings began t o  have 

apprec iab le  f f e c t s  on the cool ing  process  and t h e r e f o r e  

slowed down the  rate of s o l i d l f i c a t i o n ,  However, the one- 

dimensional model which was us& to o b t a i n  the t h e o r e t i c a l  

results essentially ignored heat gains o r  losses I n  a l l  

d i r e c t i o n s  b u t  t h a t  d i r e c t i o n  in .*hich the  one-diinensional 

model was formulated,  Consequently the  t h e o r e t i c a l  r e s u l t  

p r e d i c t e d  a much faster rate of s o l l d i f i c a t l o n  than that 

obse rvcd experlmen t a l l y .  
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Table  1 

Comparison of  temperature profi les  obtained theoretically 
(at  t = 48.0 sec)  u3ing l,O=scc and 2.0-sec time steps.  
Run 1: Pre-solidification problem. 

Distance from 
bottom plate 

y cm 

0.00 
0.16 
0.32 
0.48 
0.63 
0.79 
0'95 
1.11 
1.27 
1.43 
1. 59 
1.75 
1.91 
2.06 
2.22 
2.38 
2.54 
2.70 
2.86 
3.02 
3.16 
3.33 
3.49 
3. 65 
3.73 

Temperature OK 
( l .0-sec time step) 

290.6 
296.4 
298.7 
299.4 
299.6 
299 6 

299 7 
299 7 
299 7 
299 . 7 
299 0 7 
299.7 
299 . 7 
299.7 
299.7 
299 . 7 
299 7 
299.7 
299 7 
299.7 
299 . 7 
299 7 
299 7 
299.7 

299 7 

t* = 51.0 

Temperature, OK 
(2.0-oec time steF1 

290.6 
296.4 
298.7 
29904 

299.6 
299 . 7 
299.7 
299.7 
299.7 
299.7 
299 7 
299.7 
299 7 
299 7 

299 7 
299.7 
299.7 . 299.7 
299 7 
299 7 
299.7 
299 7 
299.7 

299 6 

299. 7 

t* = 51.0 
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Run 1 

Table  2 

Leas t - squares  polynomial f i t s ,  fl( t )  and f 2 (  t )  , t o  e x p c r i -  
mentally-measured tempera tures  of t h e  bot tom and the top 
piates r e s p e c t i v e l y :  Run 1, 

= Ambient t empe rat ure  - 299.7OK Ta 
= Final steady-state tempera ture  

C P f  of t h e  bottom p l a t e  = 262JoK 
T 

f l ( t )  = Polynomial  o b t a i n e d  from a 
l e a s t - s q u a r e s  f i t  of 
exper iment  ally-measured 

plate - 262.7 + 37,Oe &0,4 K 

where c1 = 0,14620836 + 0,34113500t - 3.1174!5415t2 .t 

O2 1.7961587 x 10 * t 

tempera tures  of tire bottom -c1t 0 

- 1,3204283 x 10 -3 t 4 + 
3,8116175 x 10 -5 t 5 

and t is measured i n  minutes:  0,O - < t 0 17.9 

f2( t )  = Polynomial o b t a i n e d  from a l e a s t - s q u a r e s  
- c * t  S!. t of e x p e  rl men t a1 ly me as u r e  d temp e rat ure  s 

where c,(t) = -7.1034089 x loa4 + 8.5043082 x 10°4t - 
rf the t o p  plate - 262.7 + 37.0e 20 e 1 ' ~  

6,4550809 x 10' t + 1,7082712 x 10' 6 3  t , 
and t is measured in minutes:  0.0 < t < 17.9 - - 
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RUQ 1 ( c o n t , )  

Figure 16. Temperature prof i les  (experimental and 
the ore ti c a1 ) for the p re- s o l i  dl f 1 cat i on 
problem (Run 1) 



1 I 1 I I 

I 



Run 1 ( con t . )  

Figure 17. Temperature profiles (experimental and 
theoretical)  for the combined p r c - s o l i d i f i -  
cation and post-colidlfication problems : 
Run 1. 

The ore t i  c a1 

Experimental Theore t i c a l  

0 3 Bottom-plate thermocouple 

+ 

0 

2 Thermocouple at 14h/47 from 
bottom plate  

3 Thermocouple at  30h/47 from 
bottom plate 

4 The~ocouple  at  h from 
bottom plate 
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Run 1 ( con t , )  

. 

Figure 18, Height of s o l i d  n-hexadecane as a funct ion of 
time: Run 1, 

. 



. 

0 
0 
0' 
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Run 2 

Table 3 

Least-squares f i ts ,  f # )  and f2(  t), t o  experimental ly-  
measured temperatures of  the bottom and top plates,  
respec t ive ly :  R u n  2. 

- Ambient temperature = 300.3'L 

T Final steady-state temperature of the bottom plate 
'pf * 263.3OK 

and t i s  measured i n  minutes: 0.0 < t 23.0 
0 0 

where' c2 = -4.7386.052 x loo4 + 6.4491732 x 10°4t - 
3,8541947 x -10 -5 t 2 + 8,3964074 x 10 -7 t 3 

and t i s  measured in minutes: 0.0 < t 23.0 
0 0 
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Run 2 ( cont , )  

Figure 19. Temperature profiles (experimental and 
the ore ti cal) for the ?re-s o l i  d i  f 1 c a t  1 on 
prob lem: R u n -  2. 



- 0  



Figure 20. Temperature profiles (experimental and 
t h e o r e t i c a l )  for the combined pre- 
s o l i  d i  f i cat i on and p 03 t - s  oli d i  f 1 cat  1 on 
problems: Run 2, 

Theoretical  

% 

Experimental. The ore t i c a l  

0 1 

+ 2 '  

0 

Bottomplate  thermocouple 

Thermocouple a t  14h/47 from 
bottom plate  

3 Thermocouple at 30ob/47 from 
bottom p l a t e  

4 Thermocouple at  h from 
bottom plate  



. 
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Figure 21, Height of solid n-hexadecane as a funct ion 
of time: Run 2, 



. . -. 

! 

. 

0 
6 



Least-squares fits , fl( t) and f 2 ( t l ,  to experlmentally- 
measured temperatures of the bottom and top p l a t e s ,  
r e s p e c t i v e l y :  Run 3. 

Ta - Ambient temperature 301.5*& 

T - Final steady-state temperature of the bo$tom plate 
'pf - 265.3OK 

-4 4 +7.2362357 x 10°3t3 - 4.2544939 x 10 t + 

and t i s  measured i n  minutes: 0.0 0 < t 5 34.3 
-c*t 

f$t) = 265.3 + 36.26 f 003% 

where c 2 ' =  -3.1603307 x I O a 4  t 4.2309680 x 10°4t - 
2,8095101 x 10°5t2 + 9.1612643 x 10 -7 t 3 * 

-0 4 1.0792678 x 10 t 

and t is measured i n  minutes: 0 .0  - t 5 34.3 

. 
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Run 3 (cone.)  

Figure 22. Temperature p r o f i l e s  (experimental ahd 
theore tical) for the p r e - s o l i d i  f l ca t  ton  
problem: R u n  3,  



I 

0 
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nigure 23. Temperature profiles (experimental and 
theoretical) Cor the combined pre- 
s 011 d i  fi cat i on and p os t -s o l i d l  f i cat i on 
problems : Run 3 b  

- Theoretical 

Experimental Theoretical 

0 

+ 

b 

1 Bottom-pl&.tre thermocouple 

* 2  Thermocouple at l4h/47 from 
bottom plate 

L 

Thermocouple at 30h/47 from 
bottom plate 

3 . 
a 4 Thermocouple at h from 

bottom p la te  



- 8 I I 

a 
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Figure 24, Iieight of s o l i d  n-hexadecane as a function of 
t i a t  RUI 3. 



0 
0 
6 
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Run 4 

Table 5 

Least-squares fits,  f l ( t )  and f2( t)  a to  experimcntally- 
measured temperatures of the bottom and the top plates ,  
r e s p e c t l v e l y :  Run 4 .  

Ambient temperature 3 o 0 . 9 ° ~  Ta 
= Final  steady-state temperature of the bottom plate 

Tcpf 1 264.OoK 

-2 2 where - 0.17001907 + 0.264540ggt - 7.3114020 x 10 t 
-4 4 t7.9185015 x 10 O3 t - 3.8016733 x 10 t + 

-6 5 6.6739894 x 10 t 

and t i s  measured i n  minutes: 0.0 < t < 61.5 - - 

Where c2 - -3.3089768 x loo4 + 1.482'7702 x 10m4t - 
and t is  measured i n  minutes: 0.0 - < t a < 61.5 

, 



Run 4 ( c o n t , )  

Figure 25. Temperature p r o f i l e s  (experimental and 
t i e  ore t i c a l )  for the pre-s o l i d i  fl cation 
problem: Run. 4. 



= 0  
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Run 4 (cont . )  

Figure 26. Temperature profiles (experimental an8 
theoret ica l )  for the combined pre- 
s o l l d l  f i  c a t i  on and p oat-sol idi  f i  c a t i  on 
problems: Run 4.  

- Theoretical 

Experimental Theoretical 

0 1 B o t t om-p late the rmo c oup le 

+ 

A 

a 

2 Thermocouple at  1411/47 from 
bottom plate 

Thermocouple at  30h/47 from 
bottom plate 

3 

4 Thermocouple at h from 
bottom plate  





Figure 27. Height of s o l i d  n-hexadccane as a func t ion  of 
time: Run 4. 
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Run 5 
Table 6 

Least-squares f its ,  f l ( t )  and f2(t) , t o  experimentally- 
measured temperatures of the bsttorn and top p lates ,  
r e s p e c t i v e l y :  Run 5 .  

Ta 

Tcpf 262.7 X 

Ambient temperature = 29 7 . a°K 

= FIna1,steady-state temperature cf the bottom plate 

.Clt 
f l ( t )  = 262.7 + 35. le  f 0,4°K 

where c1 * 6.5019191 x loo2 + O.40147416t - 
0.14185947t2 + 2.2468639 x 10 -2 t 3 ~ 

1.0686646 x 10- 3 4  t t 4.7213390 x 10 -5 t 5 

and t i s  measured i n  minutes: 0.0 5 t 5 61.0 . -C$ 

f2(t) - 262.7 + 35.16 i 0*l0X e 

and t is measured in minutes: 0.0 5 t 5 61.0 



Figure 28, Temperature profiles (experimen3al and 
theoretical)  for the pre-soiidif'ication 
problem: Run 5. 



w 
0 
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Figure 29. Temperature profiles (experimental and 
theoretical) for the combined pre- 
8 o l i  di fi cat ion and p os t =s oLid i  f I cation 
problems: R u n  5. 

Theore t i c a l  

Experimental Theoretical 
* 

0 1 Bot tom-plate thermocouple 

+ 

A 

2 Thermocouple at 14h/47 f r o m  
bottom plate 

3 Thermocouple at 30h/47 from 
b o t t o m  plate 

4 Thermocouple at h f r o m  
bottom plate 

h = 47/32 In. = 3.73 cm, 



. 
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Run 5 (cant.) 

Figure 30. Height of s o l i d  n-hexadecane as a func t ion  of 
time: Run 5. 
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Run 6 

Table 7 

Least-squares f i t s ,  fl( t)  and f2( t ) ,  t o  experimentally- 
measured temseratures of the bottom and the top p lates ,  
respectively : Run 6. 

- Ambient temperature - 298.2% 

= Final steady-state temperature of the bottom p l a t e  
a T 

Tcpr - 261.7 

where c1 - 6.6373908 x loo2 t 3.6587925 x 10% - 
8.4706573 x 10 -4 t 4 t 1.7879879 x 10 -5 t 5 

and t I s  measured i n  minutes: 0.0 < t < 62.0 - 
-c2t 

f2(t) - 261.7 + 36.5e f 0.3'K . 
where c2 - -3.9221055 x loo4 + 3.7329234 x 10a4t - 

1.0960065 x 10 -5 t 2 t 1.3965306 x 10 -7 t 3 - 
8.2314786 x l O a l o t 4  t 1.8183611 x 10'12t5 

and t I s  measured i n  minutes: 0 . 0  < t C 62.0 
L - 

, 
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Run 6 ( con t . )  

Figure 31. Temperature profiles (experimental and 
theoretical) f o r  the pre-solidi f icat l  on 
problem: R u n  6. 
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Run 6 (cont . )  

Figure 32. Temperature profiles (experimental and 
t h e o r e t i c a l )  for the combined pre- 
s o l i  d i f l c a t i  on and p os t - so  l i d i  f i ca t l  on 
problems: Run 60 

The ore t i c a l  

Experiment a1 The ore ti c a1 

0 

+ 

d 

1 Bot tom-p late thermocouple 

2 Thermocouple at  14h/47 from 
bottom plate 

3 Thermocouple a t  30h/47 from 
bottom plate 

4 Thermocouple at  h from 
bottom plate 

h = 47/32 in, = 3.73 cm. 
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Run 6 ( cont . )  

Figure 33. Height of s o l i d  n-hexadecane as a function o f  
time: Run 6, 



. 
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CON CLUS I OiJS 

I n  genera l ,  good agrement between experimental  and 

t h e o r e t i c a l  r e s u l t s  has been observed. Therefore ,  I t  seems 

obvious t o  conclude t n a t  the numerical a n a l y s i s  ctevcloped in 

t h i s  study has c e r t a i n  advantageous c h a r a c t e r i s t i c s  that 

make i t  ext remely  s u i t a b l e  for the  s tudy of problems involv- 

ing unidimensional me l t ing  o r  f r e e z i n g ,  IIorvever, it has 

some disadvantages , too. 

The a p p l i c a b i l i t y  of t h e  numerical method developed 

here may be extended t o  c y l i n d r i c a l  and s p h e r i c a l  coordin- 

ates and f o r  other geometric sys t ems  f o r  which cross- 

s e c t i o n a l  areas are func t ions  of the d i s t a n c e  f r om the o r i g i n  

only. The method also reduces t h e  t i m e  and the  memory bank 

used up by the computer program as compared to those  used in 

e x p l i c i t  f i n i t e  d i f f e r e n c e  formulat ions,  The use of poly- 

namial fits of the temperatures of the  boundzrles,  as has 

been dcne i n  t h i s  study,  makes i t  unnecessary t o  c a l c u l a t e  

a c t u a l  h e a t - t r a n s f e r  rates through the boundaries i n  o rde r  

t o  so lve  similar problems wi th  time-dependent boundary c m -  

d i  ti ons . 
Hcwever, one obvious diradvantage of the method used i n  

t h i s  study, i s  t h a t  i t  is approximate. fieat gain3 or l o s s e s  

were neg lec t ed  i n  a11 b u t  one dimension. 

d i t i o n s  which wer2 used t o  solvt? the one-dimensional model 

The boundary con- 

. 145 



problem were only approximations of the actual boundary con- 

d i t i o n s  or the exper1rnei;tally-observed boundary condi t ions .  

Convection I n  the  l l q u i d  phase was also neglected.  Trunca- 

t i o n  e r r o r s  i n  t h e  formulat ion of the f i n i t e  diffcre .  ce 

equat ions  and the round-off errors i n  the computer ?r ?rams 

which were used t o  c a l c u l a t e  the t h e o r e t i c a l  resu l t s  a130 

con t r ibu ted  t o  t h e  e r r o r s  i n  t h e  t h e o r e t i c a l  r e su l t s ,  

Average b u t  d i f f e r e n t  p h y s i c a l  p r o p e r t i e s  were used for the  

l i q u i d  and s o l i d  phases i n  t h e  t h e o r e t i c a l  a n a l y s i s  whereas 

t h e  a c t u a l  p h y s i c a l  p r o p e r t i e s  of the two phases were tempera- 

t u r e  dependent. I n  a d d i t i o n  t o  a l l  t3ese sources  of error,  

there was some e r r o r  in ob ta in ing  t h e  experimental  data, 

mainly due t o  b u i l t - i n  e r r o r s  In  the  c a l i b r a t i o n  of the  

experimental  equipment and t h e  juegement of t h i s  experimenter.  

Although a good g e n e r a l  agreement was obtained between 

experimental  and t h e o r e t i c a l  r e s u l t s ,  i t  must be caut ioned 

t h a t  the numerical  t rea tment  used in t h i s  s tudy  13 ra ther  

involved  and could hardly be appl ied  t o  f r e e z i n g  o r  meltin&; 
': 

In systems wi th  more than one , coord ina te  dimension o r  In 

problems i n  which c m v e c t i v e  effects are be ing  considered. .  

I n  such  cases , t he  assumption of p a r t i a l l y - s o l i d i f i e d  ele- 

ments should be e l imina te?  and more convent ional  procedures 

( e x p l i c i t  f i n i t e  d i f f e r e n c e  formulatlono , "super-heat" 

method, "pseudo-specific heat" method, e t c . )  should be 

appl ied,  

More accura t e  r e su l t s  and b e t t e r  t h e o r e t i - a l  models 
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would be obta ined  if heat g a i n s ,  convective e f f e c t s ,  i n t e r -  

f ace  area e f f e c t s  and o t h e r  sources  of e r r o r  could be 

inc luded  in t h e  t h e o r e t i c a l  a n a l y s i s ,  Two o r  three-dimensional 

models should a l s o  be s t u d i e d  i n  o rde r  t o  ob ta in  be t te r  

t h e o r e t i c a l  r e s u l t s ,  It would a l s o  be  extremely convenient 

t o  develog a more r e f h e d  method of measuring heat i n p u t s  

and losses and of e s t a b l i s h i n g  t h e  a c t u a l  time-dependent 

boundary condi t ions  , 

A s tudy  t h a t  inc luded  the s tudy  of convective e f f e c t s  as  

the  t e s t  c e l l  was t i l t e d  a t  var ious  angles  would be desirable,  

s i n c e  convection d e f i n i t e l y  a f f e c t s  the s o l i d i f i c a t i o n  

phenomena, I n  such a s tudy  i t  would no longer  be necessary 

t o  minimize convection i n  t he  l i q u i d  phase by cool ing  the 

tes t  c e l l  from below, I n  the same category as a study of 

convective effects would be a s t u d y  of the  effects  of rnechaq- 

i ca l  shahing o r  vdbra t lons  on t he  s o l i d i f i c a t i o n  process  , 

It is e v i d e n t  t h a t  the rate of heat t r a n s f e r  is  the  l i m i t i n g  

f a c t o r  f o r  t h e  p r a c t i c a l  a p p l i c a t i o n s  of f u s i b l e  materials 

as thermal c o n t r o l l e r s .  Thus e f f o r t s  should be made t o  

i n c r e a s e  the h e a t - t r a n s f e r  area and t o  improve the perform- 

ance of the  c e l l  as a whole, 

Nucleation was n e g l i g i b l e  i n  the p r e s e n t  s tudy ,  but It 

would be of i n t e r e s t  t o  s t u d y  t h e  s o l i d i f i c a t i c n  of materials 

i n  whicn the e f f e c t s  of n u c l e a t i o n  are apprec iab le .  

Since o u t e r  space I s  v i r t u a l l y  a vacuum, a s tudy of the 

s o l i d i f i c a t i o n  process  i n  s i t u a t i o n s  i n  which the test  c e l l  
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i s  k e p t  In a vacuum could b e  u s e f u l  i n  predlct i f lg  the per- 

formance of the test  material I n  outer space as a thermal 

control ler .  In  such an experiment, care should be  taken to 

prevent leaks from developing i n  the test c e l l .  Radiation 

would be the main mode of free heat transfer between the  

t e a t  c e l l  and its surroundings, besides the forced heat 

trans f e r  due t o  t h e  c i r c u l a t i n g  coolant, 
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Text - 
A 

OL 

aR 

B 

Bl 

bl 

Computer 

A 0  

A 1  

Constant term i n  an exponen t i a l  equat ion  

Coef f i c i en t  of gi 0 1,3+1 i n  a t r i d i a g o n a l  
m a t r i x  equat ion 

Liqul +phase therma 1 d i  f f u s  i v i  t y  

Solid-phase thermal d i f f u s i v i t y  

F rac t ion  of a time s t e p  between the p o i n t  
(R, J+1) and t h e  i n t e r s e c t i o n  of .the i n t e r -  
f ace  with the  Rth space g r i d  l i n e  

Constant i n  an exponen t i a l  equat ion  

Coef f i c i en t  of Oi , j+ l  i n  a t r i d i a g o n a l  
mat r ix*  equat ion  

SMALLa(1) A term i n  the  s o l u t i o n  to a t r i d i a g o n a l  
m a t r i x  equat ion  f o r  the it! space node 

C o e f f i c i e n t  of ei+l,jtl i n  a t r i d i a g o n a l  
matrix equat ion  

C o e f f i c i e n t  of the  exponent i n  an exponen- 
t i a l  equat ion;  a value obta ined  by a least- 
squares  f i t  of c t ( t )  

C o e f f i c i e n t  of t he  exponent i n  an exponen- 
tial equat ion  as c a l c u l a t e d  d i r e c t l y  from 
experiment a1 ly-measured temperatures 

Coef f i c i en t  af t he  exponent I n  a least- 
squares  exponen t i a l  f i t  of the temperatures 
of the bottom p la te  

Coef f i c i en t  of the exponent I n  a least- 
squares exponen t i a l  f i t  of the temperatures' 

of t h e  top plate  
a 



T e x t  - 
cPL 

PS C 

di 

AT,AT,, 

A t  

bZ 

AY 

Hf 
h 

ha 

J 

*L 
Ks 
OK 

a k 

LO 

L 

Computer 

L i q u i  d-ph as e s p e  c l  f i c he a t  

Solid-phase s p e c i f i c  heat 

Ri@it-hand s i d e  of the ith tridiagonal 
mat r ix  equat ion 

D(I) 

AK Dimensionless time increment 

Time increment (sec) 

AH Dimensionless s p a t i a l  increment 

Spatial increment (cm) 

F11,Fl, Polynomial f i t  t o  experimental?y-measured 
F(181) temperature p r o f i l e  of the bottom plate 

F21,F2, Polynomial f i t  t o  experimentally-measured 
F('#2) temperature p r o f i l e  of the to? plate 

Heat of s o l i d i f i c a t i o n  

Total height of n-hexadecane i n  a test c e l l  
a t  the  s t a r t  of an experiment 

AH Magnitude of f i n i t e  dimensionless spatial 
s t e p  

A J  Dimensionless cons tan t  

Liquid-phase thermal  conduct iv i ty  

S 015. d-p h as e the m a  1 c onduc t i v i  t y 

Degree Kelvin 

AK Magnitude of  finite dimensionless time step 

S u b s c r i p t  r e f e r r i n g  t o  the l i q u i d  phase in 
t h e  p r e - s o l i d t f i c a t i o n  problem 

S u b s c r i p t  r e f e r r ing  t o  the l i q u i d  phase in 
the s o l i d i f i c a t i o n  problem 



T e x t  

x 
M 

N 

- 

R 

S 

T 

Tcpf 

*LO 
, . -. 

TL 

, 

C omp u t e r 

OA Dimensionless cons t an t ,  as/aL 

AI4 Dimensionless cons tan t  

iJ T o t a l  number of spa t i a l  nodes, w % t h  t h e  

first node numbered '0' 

" O f  the o rde r  of kat' 

P k,/ha2 

Heat flow p e r  unit area p e r  u n i t  time 

A term, I n  t h e  s o l u t i o n  t o  a t r l d i a g o n a l  
m a t r i x  equat ion f o r  the Ith s p a t 2 a l  node 

QW 

R Number of the spat ia l  grid line (in the 
s o l i d  phase) which I s  on or  nex t  t o  the 

i n t e r f a c e  of s o l i d i f i c a t i o n  

Liquidrphase density 

Solid-phase dens i ty  

BIGESS $2 Dimenslcnless h e i g h t  of the s o l i d  phase 

which has been formed up t o  the dimension- 53,54 

less time, t 

S u b s c r i p t  r e f e r r i n g  t o  t h e  s o l i d  phase i n  
the s o l i d i f i c a t i o n  problem 

T Temp e ra t  ure 

TA 1 Ambient temperature 

A 0  Final steady-state temperature of  the 

bottom p l a t e  

TPI Liquid-phase temperature i n  the pre- 

s o l i  d l  f i c a t i o n  prob lem 

T0 Llqui  d-phase temperature In the s o l i d i f i c a -  
t i o n  problem 



Text Comp u t  e r - 
TS 

Te TE 

t TIIU 

t' T I  MST 

Ts 

TTP 

eLo 

eL 

TO 

T 

xJ+l 

Y 

S o li d-p h as e t e  mpe r a t  urc 

E q u i l i b r i u m  temperature of s o l i d i f i c a t i o n  

Time ( s e c  o r  min) 

Tlme i n t e r v a l  from the s ta r t  of cool ing  t o  
the star+, of s o l i d i f i c a t i o n  a t  the bot tom 
p l a t e  ( s e c )  

Last experiment time a t  which a computer 
program should end 

DimensionL?ss temperature f o r  node l o c a t e d  
on spat ia l  coord ina te  5 and time coord ina te  j 

'ETA20 Dimensionless l iquid-phase temperature i n  
the p r e - s o l i d i  f l c a t i o n  problem 

TZa ,TL0 Dimensionless l iquid-phase temperature f o r  

, the s o l i d i f i c a t i o n  problem 

TSS ,TS Dimensionless solid-phase temperature 

TAUZM Dimensionless time f m  the p r e - s o l i d i f i c a t i o n  
problem 

TAUOST Dimensionless time i n t e r v a l  from the s t a r t  
of coo l ing  t o  the atart of s o l i d i f i c a t i o n  a t  
the  bottom plate 

TAU 

x 1  

Dimensi onless time f o r  the, s o l i d i f i c a t i o n  
problem 

F r a c t i o n  of a s p a t i a i  element t h a t  has 
s o l i d i f i e d  by the ( j+ l ) s t  time s t e p  

F r a c t i o n  of a spat ia l  element t ha t  has 
s o l i d i f i e d  by t k  jtb time s t e p  

S p a t i a l  coord ina te  



Compute r 

Y 1  Height of the 
time t 

Dimens i on l e  s 3 

Maximum er ror  

s o l i d  phase formed 

s p a t  i a 1 c o ordf 11 at  e 

In ca lcu la t ing  t h e  

up t o  

dlmensi on- 
less h e i g h t  of the solid-phase during a 
dlmensi onlcss t lme s t e p  

Subindices  S u b s c r i p t s  

i 1 I d e n t i f y i n g  number f o r  f i n i t e  s p a t i a l  
increment 

3 J Ident i fy ing  number f o r  f i n i t e  time 
increr tn t 

, 
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A P P U  DI X 

FORTRAN I V  Computer Program f o r  obta in ing  exponen t i a l  f i t s  
to  experimentally-measured temperatures of th2 bottom and 
the top plates . 

The subroutine which tfa3 c a l l e d  i n  t h i s  p r o g a n  had been 

wri t ten  by A.R.  Brown, Jr .  ( 3 3 )  for obta in ing  ordinarj  poly- 

nomial fits by t h e  least -squares  method. The subroutine was 

modified before  be ing  used In t h i s  p a r t i c u l a r  program. 
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A P P M  DI X 

FORTk4iJ IV Computer Program for so lv lng  the p r e - s o l i d i f i c a t i o n  

problem. 
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FORTRAX IV Computer Prograa f o r  so lv ing  the s o l i d i f i c a t i o n  

problem. 
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